Linear Preserver Problems
and their Solutions,
Problems, Conjectures, etc.

LeRoy B. Beasley
Department of Mathematics and
Statistics, Utah State University
Logan, Utah 84322-3900, USA
Let \mathcal{G}_n denote the set of all simple loopless undirected graphs on n vertices. Let $s_n : \mathcal{G}_n \rightarrow \mathcal{B}^n$ be a mapping such that for $G \in \mathcal{G}_n$, the i^{th} coordinate of $s_n(G)$, $s_n(G)_i$, is one if G contains an i-cycle, and zero otherwise. The mapping s_n is called a cycle sequence mapping and $s_n(G)$ is called the cycle sequence of G. Let $e_{i,j}$ denote the edge joining vertices i and j. We also let $e_{i,j}$ denote the graph consisting of the one edge $e_{i,j}$. Let $+$ denote the union of two graphs. Let $T : \mathcal{G}_n \rightarrow \mathcal{G}_n$ be a linear operator that preserves the mapping s_n.

Theorem 0.1 For $n \geq 4$, T is a vertex permutation.

Proof. Suppose $T(X) = O$ for some $X \in \mathcal{G}_n$. then there is some pair (i, j) such
that $T(e_{i,j}) = 0$. (Due to the Boolean arithmetic used in the semiring.) Without loss of generality we may assume that $T(e_{1,2}) = 0$. Now, $T(e_{1,2} + e_{2,3} + \cdots + e_{n-1,n} + e_{n,1})$ must have at least one n-cycle and cycles of no other length. But $e_{2,3} + \cdots + e_{n-1,n} + e_{n,1}$ has no cycles, so $T(e_{2,3} + \cdots + e_{n-1,n} + e_{n,1})$ has no cycle, but $T(e_{1,2} + e_{2,3} + \cdots + e_{n-1,n} + e_{n,1}) = T(e_{2,3} + \cdots + e_{n-1,n} + e_{n,1})$, a contradiction. Thus T is nonsingular.

Suppose that $|T(e_{i,j})| \geq 2$, without loss of generality, $(i,j) = (1,2)$. Then $T(e_{1,2} + e_{2,3} + \cdots + e_{n-1,n} + e_{n,1})$ must contain only n-cycles. But, then, $T(e_{1,2} + e_{2,3} + \cdots + e_{n-1,n} + e_{n,1})$ has exactly n edges. So, there is some $(i, i + 1)$ such that

$$T(e_{1,2} + e_{2,3} + \cdots + e_{n-1,n} + e_{n,1} \setminus e_{i,i+1}) = T(e_{1,2} + e_{2,3} + \cdots + e_{n-1,n} + e_{n,1}).$$

But then,
\[T(e_{1,2} + e_{2,3} + \cdots + e_{n-1,n} + e_{n,1} \setminus e_{i,i+1}) \]

has no cycles while

\[T(e_{1,2} + e_{2,3} + \cdots + e_{n-1,n} + e_{n,1}) \]

has an \(n \) cycle, a contradiction. Thus, \(T \) permutes the edges.

Now, consider \(T(e_{1,2} + e_{1,3} + e_{1,4}) \). If this is not a star, since it must be cycle free, it is either a) three disjoint edges, i.e. \(e_{1,2} + e_{3,4} + e_{5,6} \), b) a two path and a disjoint edge, i.e. \((e_{1,2} + e_{2,3}) + e_{4,5} \), or c) a three path, i.e. \(e_{1,2} + e_{2,3} + e_{3,4} \). By considering the possible images, \(T(e_{2,3}), T(e_{3,4}) \), and \(T(e_{4,1}) \) one obtains a contradiction, since either some image of a three-cycle will not be a three-cycle or the image of the tree-star and one other edge will be a four-cycle. It follows that \(T \) maps stars to stars.

Thus, \(T \) is bijective and preserves stars. Thus \(T \) is a vertex permutation. See, e.g. Beasley, Pullman [?].
Further investigations.

1. T preserves the set of cycles of length 3 and the set of cycles of length k for some $4 \leq k \leq n$.

2. T preserves the set of cycles of length n and the set of cycles of length k for some $3 \leq k \leq n - 1$.

3. T preserves the set of cycles of length i and the set of cycles of length j for some $3 \leq i < j \leq n$.

4. T is invertible and T preserves the set of cycles of length k for some $3 \leq k \leq n$.

5. T strongly preserves the set of cycles of length k for some $3 \leq k \leq n$.
6. \(T(K) = K \) and preserves the set of cycles of length \(k \) for some \(4 \leq k \leq n \) where \(K \) is the complete graph on \(n \) vertices.

Also The above extended to the set of directed graphs. Nearly the same proof works for the cycle sequence mapping.