Linear Algebra (선형대수학) by SGLee

(개척자) http://matrix.skku.ac.kr/K-Math-History/index.htm

[New] 선형대수학 Interactive 학습실 (GeoGebra+Sage+강의록+동영상)

 Index Contents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 15 16
 9 10 11 12 13 행렬 계산기 Matrix Calculator 14 15
 16 17
 18 19
 20 21
 22 23

 2012년도 Syllabus 교과목명 선형대수학 학수번호 GEDB003-42 사용언어 English 영역구분 교양.기초 수강대상학부 all 이수구분 교양.기초 학점/시간 3학점 / 3시간 인증구분 년도/학기 2012/1 학기 강의실 기초학문관 1층 017【51155】 수업시간 화,목 10:30~11:45 담당교수 명 이상구 교수 연락처(연구실) 031-290-7025 E-Mail sglee@skku.edu 교과목 개요 We will cover : Vectors, geometric, norm, vector addition, dot product, equality, application of angle between vectors as measure of genetic distance Systems of linear equations and Gauss-Jordan elimination, Matrices, inverses, diagonal, triangular, symmetric, trace, geographical distribution, probability matrices, and application to colour. LT. Determinants, evaluation by row operations and Laplace expansion, properties, vector cross products, eigenvalues and eigenvectors, Differential equations, system of first order linear equations, applications to population dynamics, linear second order equations. Jordan canonical Forms. You may refer : http://matrix.skku.ac.kr/CLAMC/index.html http://matrix.skku.ac.kr/2011-sage/sage-la/ http://www.youtube.com/watch?v=97qI2yQC5Gs 교과목 목표 We will discuss many interesting problems from textbook and other in English. This will be an introduction to linear algebra, including matrix operations, systems of linear equations, vector spaces, subspaces, bases and linear independence, eigenvalues and eigenvectors, diagonalization of matrices, linear transformations, determinants.  If you have any conflict with it, I would recommend to take other class. All Quiz problems will be given in English.

Linear Algebra with Sage 강의

※ Made by Prof. SGLee at Sungkyunkwan Univ.

 SKKU Linear Algebra with Sage 강좌명 선형대수학 담당교수 sglee@skku.edu Ch. 주제 section 내용 동영상 강의자료 0 Preface http://youtu.be/CbfJYPCkbm8 Introduction  of CAS http://youtu.be/0SQpiNe2LU8 1 벡터 1-1 Vector http://youtu.be/85kGK6bJLns 1-2 Norm http://youtu.be/g55dfkmlTHE 1-3 Vector Equations http://youtu.be/YB976T1w0kE 2 선형연립방정식 2-1 LSE http://youtu.be/AAUQvdjQ-qk 2-2 RREF 2-3 Appl of LSE http://youtu.be/G790BLDSK5g 3 행렬과 행렬대수 3-1 Matrix http://youtu.be/JdNnHGdJBrQ 3-2 Inverse Matrix http://youtu.be/yeCUPdRx7Bk 3-3 Elementary Matrix http://youtu.be/oQ2m6SSSquc 3-4 Subspace http://youtu.be/UTTUg6JUFQM 3-5 Solutions Set http://youtu.be/O0TPCpKW_eY 3-6 Special Matrices http://youtu.be/jLh77sZOaM8 3-7 LU- Factorization http://youtu.be/lKJPnLCiAVU 3-8 Theorem of Triangular matrix http://youtu.be/UriXEI-xoRk 4 행렬식 4-1 Determinant http://youtu.be/Vf8LlkKKHgg http://youtu.be/_3WRlwDUU9Y 4-2 Cofactor Expansion http://youtu.be/m6l2my6pSwY 4-3 Cramer's Law http://youtu.be/m2NkOX7gE50 4-4 Appl of Determinant http://youtu.be/KtkOH5M3_Lc 4-5 Eigenvalue & Eigenvector http://youtu.be/96Brbkx1cQ4 5 행렬모델 5-1 Power Method http://youtu.be/CLxjkZuNJXw 5-2 Encryption http://youtu.be/umTIADxsEq8 5-3 Blackout Game http://youtu.be/_bS33Ifa29s 5-4 Markov Chains http://youtu.be/156ezier6HQ 5-5 Google Matrix http://youtu.be/WNUoXLh8i_E 5-6 Project http://youtu.be/coNq48CW6Pg 6 선형변환 6-1 Linear Transformation http://youtu.be/Yr23NRSpSoM 6-2 Linear Operator http://youtu.be/12WP-cb6Ymc 6-3 Kernel 6-4 Composite  and Inverse http://youtu.be/qfAmNsdlPxc 6-5 Computer Graphic http://youtu.be/VV5zzeYipZs 7 차원과 부분공간 7-1 Basis Dimension 7-2 Fundamental Subspaces http://youtu.be/dWoq2YVsy-g 7-3 Rank Nullity Theorem http://youtu.be/8P7cd-Eh328 http://youtu.be/bM-Pze0suqo Proof of Rank-Nullity Theorem http://youtu.be/f3P4gfDVd8M 7-4 Rank Theorem http://youtu.be/BKZwJiuEYZE 7-5 Projection Theorem http://youtu.be/Rv1rd3u-oYg Proof of Schur Theorem http://youtu.be/lL0VdTStJDM 7-7 Gram-Schmidt ON Process http://youtu.be/EBCi1nR7EuE 7-9 Coordinate vectors http://youtu.be/tdd7gbtCCRg 8 행렬의 대각화 8-1 Matrix of LT http://youtu.be/jfMcPoso6g4 8-2 similarity http://youtu.be/MnfLcBZsV-I 8-3 OrthoDiag http://youtu.be/B—ABwoKAN4 8-4 Quadratic Ft http://youtu.be/lznsULrqJ_0 8-5 Appl of Quadratic Function 8-6 Singular Value Decomposition 8-7 Complex matrix http://youtu.be/Ma2er-9LC_g 8-8 Hermitian matrix http://youtu.be/GLGwj6tzd60 9 일반벡터공간 9-1 Vector Spaces http://youtu.be/beXWYXYtAaI 9-2 Inner product spaces http://youtu.be/nIkYF-uvFdA 9-3 Isomorphism http://youtu.be/Y2lhCID0XS8 10 Jordan 표준형 (with Sage) 10-1 Jordan Canonical Form http://youtu.be/NBLZPcWRHYI 10-3 Jordan Canonical Form with Sage http://youtu.be/LxY6RcNTEE0

강의 중 학생 문제 풀이 등 발표 내용

※ 자료