MT 김신휘 Generalized Eigenvectors - Definition(정의)


MT Problem

Sol)

[Find eigenvalues and eigenvectors of ]

A = matrix(QQ,[[0,0,1,7,-1],[-5,-6,-6,-35,5],[1,1,-7,7,-1],[0,0,0,-9,0],[2,1,-5,-42,-3]])
2
1
A = matrix(QQ,[[0,0,1,7,-1],[-5,-6,-6,-35,5],[1,1,-7,7,-1],[0,0,0,-9,0],[2,1,-5,-42,-3]])
2
show(A.right_eigenvectors())
 
 



x1 = matrix(QQ,5,1,[0,0,0,1,7])
1
1
x1 = matrix(QQ,5,1,[0,0,0,1,7])
 
 



[Find two linearly independent generalized eigenvectors of  belonging to ]

EYE = matrix(QQ,[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]])
4
1
EYE = matrix(QQ,[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]])
2
y1 = matrix(QQ,5,1,[1,0,0,0,1])
3
print "rank(A+I) = " , rank(A+1*EYE)
4
print "rank((A+I).augment(y1)) = " , rank((A+1*EYE).augment(y1))
 
 



y2 = (A+1*EYE).solve_right(y1)
2
1
y2 = (A+1*EYE).solve_right(y1)
2
print(y2)
 
 



z1 = matrix(QQ,5,1,[0,1,1,0,1])
1
z1 = matrix(QQ,5,1,[0,1,1,0,1])
2
print "rank(A+7I) = " , rank(A+7*EYE)
3
print "rank((A+7I).augment(z1)) = " , rank((A+7*EYE).augment(z1))
 
 



z2 = (A+7*EYE).solve_right(z1)
2
1
z2 = (A+7*EYE).solve_right(z1)
2
print(z2)
 
 



 

( Citatiion : Jin Ho Kwak and Sungpyo Hong, 1997, Linear Algebra, 327-330p)


 -

Q = x1.augment(y1).augment(y2).augment(z1).augment(z2)
6
1
Q = x1.augment(y1).augment(y2).augment(z1).augment(z2)
2
print "Q = "
3
print Q
4
print
5
print "J = "
6
print Q.inverse() * A * Q
 
 



 

References

Jin Ho Kwak and Sungpyo Hong, 1997, Linear Algebra, 327-330p

SKKU Matrix Theory Contents


Back to the Index Page

 
1
1