MT 김신휘 Generalized Eigenvectors - Definition(정의)
MT Problem
Sol)
[Find eigenvalues and eigenvectors of ]
A = matrix(QQ,[[0,0,1,7,-1],[-5,-6,-6,-35,5],[1,1,-7,7,-1],[0,0,0,-9,0],[2,1,-5,-42,-3]])
A = matrix(QQ,[[0,0,1,7,-1],[-5,-6,-6,-35,5],[1,1,-7,7,-1],[0,0,0,-9,0],[2,1,-5,-42,-3]])
show(A.right_eigenvectors())
x1 = matrix(QQ,5,1,[0,0,0,1,7])
x1 = matrix(QQ,5,1,[0,0,0,1,7])
[Find two linearly independent generalized eigenvectors of belonging to
]
EYE = matrix(QQ,[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]])
EYE = matrix(QQ,[[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]])
y1 = matrix(QQ,5,1,[1,0,0,0,1])
print "rank(A+I) = " , rank(A+1*EYE)
print "rank((A+I).augment(y1)) = " , rank((A+1*EYE).augment(y1))
y2 = (A+1*EYE).solve_right(y1)
y2 = (A+1*EYE).solve_right(y1)
print(y2)
z1 = matrix(QQ,5,1,[0,1,1,0,1])
z1 = matrix(QQ,5,1,[0,1,1,0,1])
print "rank(A+7I) = " , rank(A+7*EYE)
print "rank((A+7I).augment(z1)) = " , rank((A+7*EYE).augment(z1))
z2 = (A+7*EYE).solve_right(z1)
z2 = (A+7*EYE).solve_right(z1)
print(z2)
( Citatiion : Jin Ho Kwak and Sungpyo Hong, 1997, Linear Algebra, 327-330p)
-
Q = x1.augment(y1).augment(y2).augment(z1).augment(z2)
Q = x1.augment(y1).augment(y2).augment(z1).augment(z2)
print "Q = "
print Q
print
print "J = "
print Q.inverse() * A * Q
References
Jin Ho Kwak and Sungpyo Hong, 1997, Linear Algebra, 327-330p
SKKU Matrix Theory Contents