MT 김신휘 Finding a Jordan Canonical Form using Generalized Eigenvectors


MT Problem

( Ref. MT 김신휘 Gemeralized Eigenvectors - Definition, Link, 2013.11.25)

A=matrix(QQ,[[0,0,1,7,-1],[-5,-6,-6,-35,5],[1,1,-7,7,-1],[0,0,0,-9,0],[2,1,-5,-42,-3]])
5
1
A=matrix(QQ,[[0,0,1,7,-1],[-5,-6,-6,-35,5],[1,1,-7,7,-1],[0,0,0,-9,0],[2,1,-5,-42,-3]])
2
Q=matrix(QQ,[[0,1,1,0,0],[0,0,-1,1,1],[0,0,0,1,0],[1,0,0,0,0],[7,1,0,1,0]])
3
J=matrix(QQ,[[-9,0,0,0,0],[0,-1,1,0,0],[0,0,-1,0,0],[0,0,0,-7,1],[0,0,0,0,-7]])
4
show(A*Q)
5
show(Q*J)
 
 



References

MT 김신휘 Gemeralized Eigenvectors - Definition, Link, 2013.11.25

SKKU Matrix Theory Contents


Back to the Index Page

 
1
1