MT 김신휘 Computation of e^A using Jordan Canonical Form
MT Page 334 Problem 9.4
(2) Computation of the exponential matrix of
.
(Citation : Jin Ho Kwak and Sungpyo Hong, 1997, Linear Algebra, 334p)
Sol)
Let be a Jordan form of
such that
.
.
Also, when ,
.
A = matrix([[2,1,0,0],[0,2,1,0],[0,0,2,0],[0,0,0,1]])
A = matrix([[2,1,0,0],[0,2,1,0],[0,0,2,0],[0,0,0,1]])
[J,Q] = A.jordan_form(transformation=True)
show(J)
show(Q)
이제 sage를 이용해서 를 구하자.
EJ = matrix([[e,0,0,0],[0,e^2,e^2,e^2/2],[0,0,e^2,e^2],[0,0,0,e^2]])
EJ = matrix([[e,0,0,0],[0,e^2,e^2,e^2/2],[0,0,e^2,e^2],[0,0,0,e^2]])
EA = Q*EJ*Q^-1
show(EA)
(Citation : Jin Ho Kwak and Sungpyo Hong, 1997, Linear Algebra, 334-335p)
Note
-
- 를 sage로 직접 구하는 것은 워크시트에서는 되지 않지만 공개를 한 문서에서는 가능하다.
e^A
e^A
Reference
Jin Ho Kwak and Sungpyo Hong, 1997, Linear Algebra, 334-335p
SKKU Matrix Theory Contents