

I. (1pt x 20=20pt) True(T) or False(F).

1. (T) For each y and each subspace W of \mathbb{R}^{n}, the vector $\mathrm{y}-\operatorname{proj}_{\mathrm{w}} \mathrm{y}$ is orthogonal to W.
2. (F) A system of six linear equations with 3 unknowns cannot have more than 1 solution.
3. (T) A linear system of the form $A \mathrm{x}=0$ containing eight equations and ten unknowns has infinitely many solutions.
4. (T) Not every linear independent set in \mathbb{R}^{n} is an orthogonal set.
5. (T) Every linear system of the form $A \mathrm{x}=0$ has at least 1 solution.
6. (T) A given matrix can be written uniquely as a sum of a symmetric matrix and a skew-symmetric matrix.
7. (F) Any subspace of \mathbb{R}^{2} is either a line through the origin or \mathbb{R}^{2}.
8. $(\mathrm{T})\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}-2 x_{3}=0\right\}$ is a subspace of \mathbb{R}^{3}
9. ($\mathrm{T} \quad$) For any $n \times n$ matrix A with $n>1$, $\operatorname{det}(\operatorname{adj} A)=\operatorname{det}(A)^{n-1}$.
10. (T) Let A be an $n \times n$ invertible matrix, then the inverse matrix of A is $A^{-1}=\frac{1}{|A|}$ adj A.
11. (T) For a set of natural numbers $S=\{1,2, \ldots, n\}$, permutation is a one to one function from S to S.
12. (T) The determinant of matrix $A=\left[a_{i j}\right]$ in M_{n}, is defined as $\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)}$.
13. (T) For any two $n \times n$ matrices A and $B, \operatorname{det}(A B)=\operatorname{det}(B) \operatorname{det}(A)$
14. (T) A matrix with all orthonormal columns is an orthogonal matrix.
15. (T) If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathrm{x} \mapsto A \mathrm{x}$ preserves length.
16. (T) For any invertible lower triangular matrix A, A^{-1} is a lower triangular matrix.
17. (F) There is a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3} whose image is \mathbb{R}^{3}.
18. (F) For a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, if $T(\mathrm{u})=T(\mathrm{v}) \Rightarrow \mathrm{u}=\mathrm{v}$, then it is called onto.
19. (F) For a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, $\operatorname{Im} T$ is a subspace of \mathbb{R}^{n}.
20. (T) If a LT $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one and onto, then $n=m$ and T is called an isomorphism.

II. (2pt x 5 = 10pt) State or Define (Choose 5: Mark only 5 and Fill the boxes and/or state).

1. $\left[\operatorname{proj}_{\mathrm{x}} \mathrm{y}\right.$] The (vector) projection of y onto x and is denoted by $\operatorname{proj}_{\mathrm{x}} \mathrm{y}$.

Here, the vector $\mathrm{w}=\overrightarrow{S P}=\mathrm{y}-\mathrm{p}$ is called the component of y orthogonal to x . Therefore, y can be written as $y=p+w$. For vectors $x(\neq 0)$, y in \mathbb{R}^{3}, we have the following:

$$
\operatorname{proj}_{\mathrm{x}} \mathrm{y}=t \mathrm{x} \quad \text { where } \quad t=\frac{\mathrm{y} \cdot \mathrm{X}}{\mathrm{x} \cdot \mathrm{x}} .
$$

2. [cofactor expansion] Let A be an $n \times n$ matrix. For any $i, j(1 \leq i, j \leq n)$ the following holds.

$$
|A|=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n} \quad \text { (cofactor expansion along the } i \text { th row) }
$$

$|A|=\quad a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\cdots+a_{n j} A_{n j} \quad$ (cofactor expansion along the j th column)
3. [eigenspace] Let A be an $n \times n$ matrix. For a nonzero vector $\mathbf{x} \in \mathbb{R}^{n}$, if there exist a scalar λ which satisfies $A \mathbf{x}=\lambda \mathbf{x}$, then λ is called an eigenvalue of A, and x is called an eigenvector of A corresponding to λ.
Define an eigenspace of A corresponding to $\lambda=$
the solution space of the system of linear equations $=\left\{\mathrm{x} \in \mathbb{R}^{n} \mid\left(\lambda I_{n}-A\right) \mathrm{x}=0\right\}$.
4. [kernel] Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then

$$
\operatorname{ker} T=\quad\left\{\mathrm{v} \in \mathbb{R}^{n} \mid T(\mathrm{v})=0 \in \mathbb{R}^{m}\right\}
$$

-

※ State the following concepts :

5. [Span of S]
the span of S is defined as the set of all linear combinations of elements of S.
6. [Linearly independent, linearly dependent]
$\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ are linearly independent: $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{k} \mathbf{x}_{k}=0 \Rightarrow c_{1}=c_{2}=\ldots=c_{k}=0$ Otherwise, $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ are linearly dependent.
7. [Cramer's Rule]

For a system of linear equations,

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \quad \vdots \quad \vdots \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n},
\end{gathered}
$$

let A be a coefficient matrix, and $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right], \mathbf{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$. Then the system of linear equations can be written as $A \mathbf{x}=\mathrm{b}$. If $|A| \neq 0$, the system of linear equations has a unique solution as follows:

$$
x_{1}=\frac{\left|A_{1}\right|}{|A|}, x_{2}=\frac{\left|A_{2}\right|}{|A|}, \ldots, x_{n}=\frac{\left|A_{n}\right|}{|A|}
$$

where $A_{j}(j=1,2, \cdots, n)$ denotes the matrix A with the j th column replaced by the vector b .

III. (4pt x 7 = 28pts) Find or Explain (Fill the boxes) :

1. Find the distance D from the point $P(3,-1,2)$ to the plane $x+3 y-2 z-6=0$.

Sol $\mathrm{p}=\operatorname{proj}_{\mathrm{n}} \mathrm{v}=t \mathrm{n}=\frac{\mathrm{v} \cdot \mathrm{n}}{\mathrm{n} \cdot \mathrm{n}} \mathrm{n}$.
Here, $\mathrm{n}=(1,3,-2), \mathrm{v}=\overrightarrow{O P_{0}}-\overrightarrow{O P_{1}}=\mathrm{x}-\mathrm{x}_{1}=(3,-1,2)-\left(x_{1}, y_{1}, z_{1}\right) \quad$ where $x_{1}+3 y_{1}-2 z_{1}-6=0$, so

$$
\begin{aligned}
& \mathrm{p}=\operatorname{proj}_{\mathrm{n}} \mathrm{v}=\frac{\left(3-x_{1},-1-y_{1}, 2-z_{1}\right) \cdot(1,3,-2)}{1^{2}+3^{2}+(-2)^{2}}(1,3,-2) \\
&=\frac{-x_{1}-3 y_{1}+2 z_{1}-4}{14}(1,3,-2)=\frac{-6-4}{14}(1,3,-2) \\
&=-\frac{5}{7}(1,3,-2)=\left(-\frac{5}{7},-\frac{15}{7}, \frac{10}{7}\right) . \\
& D=\left\|\operatorname{proj}_{\mathrm{n}} \mathrm{v}\right\|=\sqrt{\left(-\frac{5}{7}\right)^{2}+\left(-\frac{15}{7}\right)^{2}+\left(\frac{10}{7}\right)^{2}}=\frac{5 \sqrt{14}}{7}
\end{aligned}
$$

Sage Copy the following code into http://sage.skku.edu to practice.

$\mathrm{n}=\operatorname{vector}([1,3,-2])$
$\mathrm{v}=\operatorname{vector}([3,-1,2]) ; \mathrm{d}=-6$
vn=v.inner_product(n)
nn=n.norm()
Distance $=\mathrm{abs}(\mathrm{vn}+\mathrm{d}) / \mathrm{nn}$
print Distance \qquad
$5 / 7 * \operatorname{sqrt}(14)$

$$
\# \frac{10}{\sqrt{14}}=\frac{5}{7} \sqrt{14}
$$

2. Suppose that three points $(-1,7),(2,15),(1,3)$ pass through the parabola $y=a_{0}+a_{1} x+a_{2} x^{2}$. By plugging in these points, obtain three linear equations. Find coefficients a_{0}, a_{1}, a_{2} by solving $A \mathrm{x}=\mathrm{b}$.

Sol
$\left\{\begin{array}{l}a_{0}-a_{1}+a_{2}=7 \\ a_{0}+2 a_{1}+4 a_{2}=15 \\ a_{0}+a_{1}+a_{2}=3\end{array} \quad\left(\because(-1,7),(2,15),(1,3)\right.\right.$ pass through the parabola) $\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 2 & 4 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{c}7 \\ 15 \\ 3\end{array}\right]$, where $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 2 & 4 \\ 1 & 1 & 1\end{array}\right], \mathrm{b}=\left[\begin{array}{c}7 \\ 15 \\ 3\end{array}\right]$.

$$
\Rightarrow \quad a_{0}=\frac{1}{3}, a_{1}=-2, a_{2}=\frac{14}{3} . \quad \text { Answer }: y=\frac{1}{3}-2 x+\frac{14}{3} x^{2}
$$

3. Let T_{1} and T_{2} are defined as follows:

$$
T_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left(4 x_{1},-2 x_{1}+x_{2},-x_{1}-3 x_{2}\right), \quad T_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2},-x_{3}, 4 x_{1}-x_{3}\right) .
$$

(1) Find the standard matrix for each T_{1} and T_{2}.
(2) Find the standard matrix for each $T_{2} \circ T_{1}$ and $T_{1} \circ T_{2}$

Sol
(1) $\quad T_{1}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}4 \\ -2 \\ -1\end{array}\right], T_{1}\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}0 \\ 1 \\ -3\end{array}\right], T_{1}\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], \quad \therefore\left[T_{1}\right]=\left[\begin{array}{ccc}4 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -3 & 0\end{array}\right]$

$$
T_{2}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right], T_{2}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right], T_{2}\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right] \quad \therefore\left[T_{2}\right]=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 \\
4 & 0 & -1
\end{array}\right]
$$

(2) $\left[T_{2} \circ T_{1}\right]=\left[T_{2}\right]\left[T_{1}\right]=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 0 & -1 \\ 4 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}4 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -3 & 0\end{array}\right]=\left[\begin{array}{cc}0 & 2\end{array}\right]=\left[\begin{array}{ccc}1 & 3 & 0 \\ 17 & 3 & 0\end{array}\right],\left[T_{1} \circ T_{2}\right]=\left[T_{1}\right]\left[T_{2}\right]=\left[\begin{array}{ccc}4 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -3 & 0\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 0 & -1 \\ 40 & -1\end{array}\right]=\left[\begin{array}{ccc}4 & 8 & 0 \\ -2 & -4 & -1 \\ -1 & -2 & 3\end{array}\right]$

```
x,y,z=var('x y z')
A(x,y,z)=(4*x,-2*x+y,-x-3*y)
a(x,y,z)=(x+2*y,-z,4*x-z)
T=linear_transformation( }\mp@subsup{\textrm{QQ}}{}{\wedge}3,\mp@subsup{Q}{}{\prime}\mp@subsup{Q}{}{\wedge}3,A
t=linear_transformation( }\mp@subsup{\textrm{QQ}}{}{\wedge}3,\mp@subsup{\textrm{QQ}}{}{\wedge}3,\textrm{a}
C = T.matrix(side='right')
c = t.matrix(side='right')
print "[T1]="
print C
print "[T2]="
print c
print "[T2*T1]="
print c*C
print "[T1*T2]="
print C*C
```

[T1]=	[T2]=
$\left[\begin{array}{lll}4 & 0 & 0\end{array}\right]$	$\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]$
$\left[\begin{array}{ccc}-2 & 1 & 0\end{array}\right]$	$\left[\begin{array}{ccc}0 & 0 & -1\end{array}\right]$
$\left[\begin{array}{lll}-1 & -3 & 0\end{array}\right]$	$\left[\begin{array}{ccc}4 & 0 & -1\end{array}\right]$
[T2*T1]=	[T1*T2]=
$\left[\begin{array}{lll}0 & 2 & 0\end{array}\right]$	$\left[\begin{array}{ccc}4 & 8 & 0\end{array}\right]$
$\left[\begin{array}{lll}1 & 3 & 0\end{array}\right]$	$\left[\begin{array}{llll}-2 & -4 & -1\end{array}\right]$
$\left[\begin{array}{lll}{[17} & 3 & 0\end{array}\right]$	$\left[\begin{array}{lll}-1 & -2 & 3\end{array}\right]$

4. Let $H_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ moves any $\mathbf{x} \in \mathbb{R}^{2}$ to a symmetric image to a line which passes through the origin and has angle $\theta=\frac{\pi}{4}$ between the line and the x-axis. Find $H_{\theta}(\mathbf{x})$ for $\mathbf{x}=\left[\begin{array}{c}2 \\ -5\end{array}\right]$.

Sol The symmetric transformation H_{θ} which passes through the origin and has angle between the line and the x-axis is,

At $\theta=\frac{\pi}{4}, \quad\left[H_{\theta}\right]=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta-\cos 2 \theta\end{array}\right]=\left[\begin{array}{cc}\cos \frac{\pi}{2} & \sin \frac{\pi}{2} \\ \sin \frac{\pi}{2}-\cos \frac{\pi}{2}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
$\therefore H_{\theta}(\mathbf{x})=\quad\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}2 \\ -5\end{array}\right]=\left[\begin{array}{c}-5 \\ 2\end{array}\right]$
5. As shown in the picture, let us define an orthogonal projection as a linear transformation (linear operator) $P_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which maps any vector x in \mathbb{R}^{2} to the orthogonal projection on a line, which passes through the origin with angle $\theta=\frac{\pi}{4}$ between the x -axis and the line. Let us denote the standard matrix corresponding to P_{θ} when $H_{\theta}=\left[\begin{array}{rr}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right]$.
Sol $P_{\theta} \mathrm{x}-\mathrm{x}=\frac{1}{2}\left(H_{\theta} \mathrm{x}-\mathrm{x}\right)$ (the same direction with a half length)

$$
\begin{aligned}
& P_{\theta} \mathrm{x}=\frac{1}{2} H_{\theta} \mathrm{x}+\frac{1}{2} \mathrm{x}=\frac{1}{2} H_{\theta} \mathrm{x}+\frac{1}{2} I \mathrm{x}=\frac{1}{2}\left(H_{\theta}+I\right) \mathrm{x} \\
& P_{\theta}=\frac{1}{2}\left(H_{\theta}+I\right)=\left(\left[\begin{array}{cc}
\frac{1}{2}(1+\cos 2 \theta) & \frac{1}{2} \sin 2 \theta \\
\frac{1}{2} \sin 2 \theta & \frac{1}{2}(1-\cos 2 \theta)
\end{array}\right]\right. \\
& \Rightarrow \quad\left[\begin{array}{cc}
\cos ^{2} \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin 2
\end{array}\right]_{\theta=\frac{\pi}{4}}=\left(\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\right)
\end{aligned}
$$

6. Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that does the following transformation of the letter F (here the smaller F is transformed to the larger F.):

Sol

Answer : $\quad T(A)=A \mathrm{x} \quad$ where $\quad A=\left[\begin{array}{cc}0 & -2 \\ 1 & 0\end{array}\right]$

$$
\text { since }\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]_{\theta=\frac{\pi}{2}}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -2 \\
1 & 0
\end{array}\right]
$$

7. [Invertible Matrix Theorem] Let A be an $n \times n$ matrix.

Which of the following statements is not equivalent to "the matrix A is invertible."?
(Choose one)
(1) Column vectors of A are linearly independent.
(2) Row vectors of A are linearly independent.
(3) $A \mathrm{x}=0$ has a unique solution $\mathrm{x}=0$.
(4) For any $n \times 1$ vector $\mathrm{b}, A \mathrm{x}=\mathrm{b}$ has a unique solution.
(5) A and I_{n} are row equivalent.
(6) A and I_{n} are column equivalent.
(7) $\operatorname{det}(A) \neq 0$
(8) $\lambda=0$ is an eigenvalue of A.
(9) $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $T_{A}(\mathrm{x})=A \mathrm{x}$ is one-to-one.
(10) $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $T_{A}(\mathrm{x})=A \mathrm{x}$ is onto.

IV. $(3+4+5=12 p t)$ Python/ Sage Computations.

Explain why this system has no solution.

Ans. The last equation in the system means $w 0=1$ which is impossible when $\mathrm{x}=(x, y, z, w)$ is a solution. Therefore $A \mathrm{x}=\mathrm{b}$ has a solution set is \varnothing (Empty set).
2. (4pts) Consider $A \mathrm{x}=\mathrm{y}$ where $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 3 & 4 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \\ 3 & 4 & 6\end{array}\right]$ and $\mathrm{y}=\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 2\end{array}\right]$. Similarly we have found the augmented matrix $[A: \mathrm{y}]$ and its RREF by Sage $\operatorname{RREF}([A: \mathrm{y}])=\left[\begin{array}{rrrrr}1 & 0 & -1 & -2 & 2 \\ 0 & 1 & 2 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(1) Find number of linear independent rows of $A \quad$ Ans: (2)
(2) The solution set of $A \mathrm{x}=\mathrm{y}$.

$$
\text { Ans: }\{(s+2 t+2,-2 s-3 t-1, s, t) \mid s, t \in \mathbb{R}\} \text { or }\left\{\left.\left[\begin{array}{c}
2 \\
-1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
2 \\
-3 \\
0 \\
1
\end{array}\right] \right\rvert\, s, t \in \mathbb{R}\right\}
$$

3. (5pts) Consider $A \mathrm{x}=\mathrm{y}$ where $A=\left[\begin{array}{cccc}-18 & -30 & -30 & -36 \\ 42 & 54 & 30 & 36 \\ -6 & -6 & 18 & 0 \\ 30 & 30 & 30 & 48\end{array}\right]$ and $\mathrm{y}=\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 2\end{array}\right]$. You were asked to find
(1) Augment matrix $[A: y]$
(2) $\operatorname{RREF}(A)$
(3) $\operatorname{Det} A$
(4) Inverse of A
(4) characteristic polynomial of A
(5) all eigenvalues of A (6) all eigenvectors of A. The following is your answer. Fill out the blanks to find each.

Sol)

Now we have some out from the Sage.
$\operatorname{RREF}(A)=$ Identity matrix of size 4
$\operatorname{det}(A)=248832$
inverse $(A)=$
$\left[\begin{array}{cccc}{[17 / 144} & 5 / 144 & 5 / 144 & 1 / 16]\end{array}\right.$
$\begin{array}{llll}{[-11 / 144} & 1 / 144 & -5 / 144 & -1 / 16]\end{array}$
$\left[\begin{array}{llll}1 / 72 & 1 / 72 & 1 / 18 & 0]\end{array}\right.$
$\left[\begin{array}{llll}-5 / 144 & -5 / 144 & -5 / 144 & 1 / 48\end{array}\right]$
characteristic polynomial of $(A)=x^{\wedge} 4-102 * x^{\wedge} 3+3528 * x^{\wedge} 2-50112 * x+248832$
eigenvalues of $A=\{48,24,18,12\}$
eigenvectors $=[(48,[(1,-1,0,-1)], 1),(24,[(0,1,-1,0)], 1),(18,[(1,-1,1,-1)], 1),(12,[(1,-1,0,0)], 1)]$

Write what (24, $[(0,1,-1,0)], 1)$ means in eigenvectors of A :

24 : eigenvalue, $[(0,1,-1,0)]$: corresponding eigenvector, $1:$ algebraic multiplicity of engenvalue 24 ,

V. (3pt x 5 = 15pt) Explain or give a sketch of proof.

1. If $A^{2}=A$, show that $(I-2 A)=(I-2 A)^{-1}$.

Proof Show $(I-2 A)(I-2 A)=I$ when $A^{2}=A$

$$
\begin{aligned}
(I-2 A)(I-2 A) & =I-2 A-2 A+4 A^{2} \\
& =I-4 A+4 A=I \quad\left(\because A^{2}=A\right)
\end{aligned}
$$

$$
\therefore(I-2 A)^{-1}=(I-2 A)
$$

2. Show $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$ when A, B are invertible square matrices of order n.

Proof $(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}$

$$
=A I_{n} A^{-1}=A A^{-1}=I_{n} .
$$

3. Let A and I be $n \times n$ matrices. If $A+I$ is invertible, show that $A(A+I)^{-1}=(A+I)^{-1} A$.

Proof $(A+I) A=A^{2}+A=A(A+I)$

$$
\begin{aligned}
& \Rightarrow \quad(A+I)^{-1}(A+I) A(A+I)^{-1}=(A+I)^{-1} A(A+I)(A+I)^{-1} \quad(\because A+I \text { is invertible }) \\
& \Rightarrow \quad A(A+I)^{-1}=(A+I)^{-1} A
\end{aligned}
$$

4. Show $W_{6}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=x_{2}=x_{3}\right\}$ is a subspace of \mathbb{R}^{3}.

Sol

Show 1) W_{6} is closed under the vector addition.
2) W_{6} is closed under the scalar multiplication.
$\forall \mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), \mathrm{y}=\left(x_{4}, x_{5}, x_{6}\right) \in W, k \in \mathbb{R}$

1) $\mathbf{x}+\mathbf{y}=\left(x_{1}+x_{4}, x_{2}+x_{5}, x_{3}+x_{6}\right) \in W_{6} \quad\left(\because x_{1}+x_{4}=x_{2}+x_{5}=x_{3}+x_{6}\right)$
2) $k \mathrm{x}=\left(k x_{1}, k x_{2}, k x_{3}\right) \in W_{6} \quad\left(\because k x_{1}=k x_{2}=k x_{3}\right)$

Therefore, W_{6} is a subspace of \mathbb{R}^{3}.
5. Show the following :

Let \mathbb{R}^{n} and \mathbb{R}^{m} be vector spaces and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
Then T is one-to-one if and only if $\operatorname{ker} T=\{0\}$.
Proof (\Rightarrow) As $\forall \mathrm{v} \in \operatorname{ker} T, T(\mathrm{v})=0=T(0)$ and T is one-to-one,

$$
\Rightarrow \quad \mathrm{v}=0
$$

$\therefore \quad \operatorname{ker} T=\{0\}$

$$
\begin{aligned}
(\Leftarrow) T\left(\mathrm{v}_{1}\right)=T\left(\mathrm{v}_{2}\right) & \Rightarrow 0=T\left(\mathrm{v}_{1}\right)-T\left(\mathrm{v}_{2}\right)=T\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) \\
& \Rightarrow \mathrm{v}_{1}-\mathrm{v}_{2} \in \operatorname{ker} T=\{0\} \Rightarrow \mathrm{v}_{1}=\mathrm{v}_{2}
\end{aligned}
$$

$\therefore \quad T$ is one-to-one.

VI. Participation and more (15pt) :

Name

$<$ Fill this form, Print it, Bring it and submit it just before your Midterm Exam on AM 10:30, Oct. 20th)

1. (10pt) Participations

(1) QnA Participations Numbers <Check yourself>: each weekly (From Sat - next Friday)

Week 1:	5	$2:$	5		$3:$	5	$4: 5$
Week 5:	5	$6:$	5		$7:$	5	$(8: 0)$

Online Participation :
$31 / 33$
Off-line Participation/ Absence: 12 / 13
(2) Your Special Contribution : including The number of your participations in Q\&A with Finalized OK by SGLee (No.), Your valuable comments on errata (No.) or shared valuable informations and others (No.)
(3) What are things that you have learned and recall well from the above participation?

2. (5pt) Project Proposal and/or Your Constructive suggestions

Title(Tentative), Goals and Objectives of your possible project:
** Linear Algebra in ??? Engneering ***
< Some of you made a good Project Proposal but not in general. Need to improve.>
SKKU LA 2015 PBL 보고서 발표 by 김** \& 우**, http://youtu.be/hUDuQ8e8HsU
SKKU 선형대수학 PBL 보고서 발표 by 손** http://youtu.be/woyS_EYWiDs
SKKU 선형대수학 PBL 보고서 ppt 발표 by 박** http://youtu.be/E-5m65-8Ea8

Motivation and Significance of your possible project:
** My major and career ***
Working Plan:
** Team with ***
Web Resources (addresses) / References (book etc) : *****
선형대수학 자료실: http://matrix.skku.ac.kr/LinearAlgebra.htm
선형대수학 거꾸로 교실 자료: http://matrix.skku.ac.kr/SKKU-LA-FL-Model/SKKU-LA-FL-Model.htm

* 선형대수학 강좌 운영방법 소개 동영상 : http://youtu.be/Mxple2Zzg-A
* 선형대수학 강좌 기록 일부 http://matrix.skku.ac.kr/2015-LA-FL/SKKU-LA-Model.pdf http://matrix.skku.ac.kr/2015-LA-FL/Linear-Algebra-Flipped-Class-SKKU.htm
(Sample: http://www.prenhall.com/esm/app/ph-linear/kolman/html/proj_intro.html
http://home2.fvcc.edu/ ~ dhicketh/LinearAlgebra/LinAlgStudentProjects.html
http://www.math.utah.edu/ ${ }^{\text {gustafso/s2012/2270/projects.html }}$
http://www2.stetson.edu/ $/$ mhale/linalg/projects.htm etc)

Etc: Write anything you like to tell me.

