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Abstract 
 

While the usage of powerful mathematics software packages plays a key role in mathematics courses such as calculus, 
linear algebra, etc., shortcomings in these softwares exist – namely, issues of price, portability, and integration into a 
dynamic classroom technological environment. With these limitations in mind, this research expounds upon the 
mentally stimulating “Zombie Population Models” first developed by Munz, Hudea, Imad, and Smith [8]. Specifically, 
we modify these models to be visualized online via Sage, an open-source mathematics software based in the Python 
programming language, that allows for direct user interaction.  Sage is very portable and does not require the user to 
download large software packages or learn extremely confined programming languages. We then focus on viewing 
mathematically “realistic” population trajectories for the different classes of zombies from Left 4 Dead, Valve 
Corporation’s immensely popular zombie video game series. All outcomes are numerically (and visually!) realized with 
online Sage tools, constructed using the @intreract command in Sage, and are available for viewing, manipulation, 
and use in a mobile environment at http://matrix.skku.ac.kr/2014-Zombie-Model/main.htm. 
 
1.  Introduction 
                                                 
1 Corresponding author 
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The outbreak and spread of virulent diseases, such as malaria, measles, smallpox, etc., is a subject 
that has remained a subject of interest in the academic community.  By creating  mathematical 
models of an epidemic, scientists can identify trends and patterns inherent in the spread of the 
disease and, accordingly, implement isolation or vaccination plans to stop its transmission.  As well, 
mathematical models of infections (part of the larger study of the distribution and effects of  
epidemics called epidemiology) can also provide clues to the cause of the disease and lead  to 
eradication from the source. Various epidemic models including SIR, SIS, SIRS, SEIS, SEIR, etc. 
have been studied for many years. For more detailed information, see [2]. 
 
The reanimated dead (i.e. “zombies”) have a strong story-telling basis throughout history and have 
fascinated cultures across the world for centuries. In this paper, we will briefly examine basic 
models for zombie infection introduced by Munz, Hudea, Imad, and Smith [8], expanding upon the 
well-known SIR epidemiological model2. Specifically, we modify these models to be visualized in 
order to allow for direct user interaction and easy viewing of “realistic” population trajectories for 
the different classes of zombies from Left 4 Dead3, Valve Corporation’s video game series that 
revolves around players surviving a pandemic of aggressive zombie-ism. 
 

 

Figure 1: Left 4 Dead, a cooperative zombie video game, and similar video game titles 
 
Sage, System for Algebra and Geometry Experimentation, was developed by William Stein with a 
development group at the University of Washington and mathematicians from around the world 
[5,12]. It was developed for the express purpose of doing mathematical computations without 
having to purchase, download, install, and learn the complex code confined to other gargantuan 
computer algebra system (CAS). Sage has been released on its website: http://www.sagemath.org. 
Furthermore, Sage has a client-server model which is well-adapted to the internet and allows for 
easy embedding and programming of Sage commands (called Sage cells) into any website [6]. 
 
In light of this, we have developed Sage interactive visualization modules for “Zombie population” 
models. In particular, these Zombie models introduce different classes, subtypes, and dynamics into 
                                                 
2 Kermack, W.O., McKendrick, A.G. A Contribution to the Mathematical Theory of Epidemics, 
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 11
5 (772), pp. 700-721, 1927. 
3 https://en.wikipedia.org/wiki/Left_4_Dead 
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the standard population model.  The construction of interactive models via Sage, which have been 
uploaded both to our Sagemath server and hosted privately, is a significant tool in understanding 
both the mathematics of population modeling and how small changes in initial parameters – initial 
population, infection rate, encounter rate, etc. - can result in vastly dissimilar dynamics later.  We 
seek to provide a comprehensive look at using Sage and interactive commands to create web tools 
that suit the user's mathematical needs. 
 

2. The Basic Zombie Population Modeling 
 
The model we will be analyzing and modifying is the basic zombie model (‘SZR’ model) of  Munz,  
Hudea, Imad, and Smith [8]. This model was first developed by David Joyner and is detailed in his 
lecture notes titled “Love, War, and Zombies – Systems of Differential Equations using Sage”[9].  
(For consistency purposes, we will use the same variable names as Joyner in order to avoid 
confusion and for overall ease of comprehension.)   This model is extremely well-known in the 
epidemiology community, so we will provide only a cursory explanation of the variables and 
equations used.  For the complete analysis, refer to [8]. This simple model considers the following 
three classes, Susceptible (S),  Zombie (Z), and Removed (R).  They are governed by their 
corresponding system of differential equations: 
 

(1)    ′ =  −  −   

(2)    ′ =  +  −   

(3)    ′ =  +  −   

 
Solutions to the above model are numerically approximated within Sage using the 
desolve_system_rk4 function4, which numerically solves the initial value problem for a system 
of first order equations and returns a list of points (that are then plotted in a easy-to-view graph) 
using the 4th order Runge-Kutta method. And we have adapted the model to an interactive 
framework where students can access the mode and manipulate variables without any prior 
programming knowledge or the need to install supplementary software.  The base for the code, 
developed within Sage, is provided here: 
 

                                                 
4 Solve numerically a system of first-order ordinary differential equations using the 4th order Runge-Kutta method. See
 http://doc.sagemath.org/html/en/reference/calculus/sage/calculus/desolvers.html. For the mathematical background of 
Runge- Kutta methods, see Griffiths, D. F., Higham, D. J. Numerical Methods for Ordinary Differential Equations: Initi
al Value Problems, Springer, 2010. 
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@interact 
def zombies(s1= slider(1,50,1,20,label='initial amount of humans'), 
            z1 = slider(1,50,1,5,label='initial amount of zombies'),  
            r1 = slider(1,50,1,5, label='initial amount of removed (infected) humans'),  
            a = slider(0,1,0.001,0.005,label='humans kill zombies rate'),  
            b = slider(0,1,0.001,0.004,label='zombies kill human rate'),  
            zeta = slider(0,1,0.001,0.009,label='resurrection rate'), 
            d = slider(0,1,0.001,0.002,label='death rate of humans (from natural causes)'),  
            timelim = slider(1,80,1,30,label='maximum time')):  
    x,y,t,s,z,r=var('x,y,t,s,z,r') 
    B=0.0 
    P=desolve_system_rk4([B-b*s*z-d*s,b*s*z-zeta*r-a*s*z,d*s+a*s*z-zeta*r],[s,z,r], 
                         ics=[0,s1,z1,r1] ,ivar=t,end_points=timelim)  
    Ps = list_plot([[t,s] for t,s,z,r in P],plotjoined=True)  
    Pz = list_plot([[t,z] for t,s,z,r in P],plotjoined=True,rgbcolor='red') 
    Pr = list_plot([[t,r] for t,s,z,r in P],plotjoined=True,rgbcolor='black')  
    show(Ps+Pz+Pr) 

Table 1: Sage code (web address 5) 

We shall provide an overview for the construction of this interactive Sage cell: first, the entire 
display tool is defined as a function (here called zombies) that takes in eight distinct parameters.   
Unlike more primitive data types as arguments for a function, since this is an interactive model, the 
arguments are labeled “sliders” that can take on a range of values as defined by the user. The very 
first line -  @interact – wraps the function zombie is what truly transforms it into an interactive cell, 
allowing for those with only a cursory understanding of Python or other programming languages to 
edit, comprehend the code, and plot solutions.  For example, instead of a static value for a, the 
“humans killing zombie rate, the users (not the programmer) can define the value with an easy-to-
use sliding tool that ranges from 0 to 1.  This makes the model not only easier to alter as a student, 
but also makes the resulting changes more intuitive and does not rely on the user needing an 
extensive knowledge of programming.  Then, using the desolve_system_rk4 function, the 
system of differential equations is solved numerically.  Finally, all trajectories are plotted for each 
population in question, labels are provided for ease of reading, and one graph containing all 
trajectories is shown to the user. 
 
And a sample of the developed Sage code, all parameters that can be altered directly by the user, 
and the resulting trajectories are provided below5. 

                                                 
5  http://matrix.skku.ac.kr/2014-Zombie-Model/SKKUMath_files/standard_graph.html (Use Chrome and Firefox 
browsers.) 
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Figure 2: Basic Zombie model 

While the 4th order Runge-Kutta method is not the only method for solving this system, it is the 
method that has the most literature associated with it; especially for the specific topic of zombie 
population modeling with Sage, desolve_system_rk4 is used almost solely. However, for those 
seeking a more mathematically rigorous method, readers can refer to the “dopri5” set integrator 
method in scipy.integrate.ode [11], implemented in SciPy (also callable within Sage), which uses 
the adaptive Dormand-Prince model [4] allowing for step-size control. As might be evident by the 
topic contents (zombies), for the purposes of this paper, we choose to focus less on mathematical 
robustness as much as simplicity for students, establishment of desolve_system_rk4 in previous 
literature, and ease of viewing in a mobile/web platform. The subject matter (Zombie infection) is 
itself improbable, so exact accuracy and the Dormand-Prince adaptive step size method, while 
undoubtedly providing more "realistic" trajectories, was not deemed necessary for our purposes 
(which are mostly educational). For more information on this specific implementation of 
desolve_system_rk4, readers are encouraged to consult [9]. 
 

3. Extensions of Zombie Population Modeling 
 
3.1 Quarantine Zombie model 
 
As an easy extension of the base zombie infection model, Munz et. al [8] provide equations for a 
“Quarantine” Zombie model.  This model resembles the situation above but with a new added class 
of infected humans that are removed from the general populace; specifically, infected humans 
(represented by a “Q” in the model) are removed and sent to private, quarantine areas, thereby 
ensuring they cannot infect new individuals and spread the disease.  The equations governing this 
scenario are: 

(4)  ′ =  −  −   
(5)  ′ =  −  −  −   
(6)  ′ =  +  −  −   
(7)  ′ =  +  −  −  +   
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(8)  ′ =  +  −   
 
We, naturally, adapted the equations to Sage in a similar vein as above. The Sage code and an 
example of “possible” trajectory, as well as a more in-depth discussion of the model, are given 
below and on our mobile site6. 
@interact 
def  zombies(human_initial= slider(1,50,1,20,label='initial amount of humans'),  

zombies_initial = slider(1,50,1,5,label='initial amount of zombies'),  
a = slider(0,1,0.001,0.005,label='human reproduction rate'), 
beta1 = slider(0,1,0.001,0.004,label='infection rate'),  
rho1 = slider(0,1,0.001,0.009,label='infect to zombie rate'),  
delta1 = slider(0,1,0.001,0.002,label='death rate (from natural causes)'),  
kappa1 = slider(0,1,0.001,0.002,label='infected human --> quarantine rate'), 
zeta1= slider(0,1,0.001,0.002,label='dead people --> reanimate as zombie rate'), 
alpha1=slider(0,1,0.001,0.002,label='zombies attack humans --> zombies die rate'), 
sigma1=slider(0,1,0.001,0.002, label='zombie quarantine rate'), 
gamma1 =slider(0,1,0.001, 0.002, label='escape rate of quarantined individuals (all 

killed)'), 
timelim = slider(1,80,1,30,label='maximum time')):  
 

     x,y,t=var('x y t') 
     B=0 
     t,s,z,r,j,q = var("t,s,z,r,j,q") 
     B=0.0 
     P = desolve_system_rk4([(a*s)-(beta1*s*z)-(delta1*s), 

(beta1*s*z)-(rho1*j)-(delta1*j)-(kappa1*j), 
(rho1*j)+(zeta1*r)-(alpha1*s*z)-(sigma1*z), 
(delta1*s)+(delta1*j)+(alpha1*s*z)-(zeta1*r)+(gamma1*q), 
(kappa1*j)+(sigma1*z)-(gamma1*q)], 
[s,j,z,r,q],ics=[0,human_initial,0,zombies_initial,0,0],ivar=t,end_points=timelim)  

#Pquar=desolve_system_rk4([B-b*s*z-rho*j-d*j-kappa*j, kappa*j+a*z-gammadie*q], 
[s,z,j,q],ics=[0,10,10,5,5],ivar=t,end_points=timelim)  
Ps = list_plot([[t,s] for t,s,j,z,r,q in P],plotjoined=True, 
legend_label='People (yay!)') 
Pz = list_plot([[t,z] for t,s,j,z,r,q in P],plotjoined=True,rgbcolor='red',  
legend_label='Zombies (grrr!)') 
Pr = list_plot([[t,r] for t,s,j,z,r,q in P],plotjoined=True,rgbcolor='black',  
legend_label='Removed') 
Pj = list_plot([[t,j] for t,s,j,z,r,q in P],plotjoined=True,rgbcolor='green',  
legend_label=' Latent Infected') 
Pq = list_plot([[t,q] for t,s,j,z,r,q in P],plotjoined=True,rgbcolor='purple',  
legend_label='Quarantined') 
show(Ps+Pz+Pr+Pj+Pq) 

Table 2: Sage code (web address 6) 

 

                                                 
6  http://matrix.skku.ac.kr/2014-Zombie-Model/SKKUMath_files/latent_graph.html 
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Figure 3:  Zombie model with Quarantine 

 
3.2 Adding the “Left 4 Dead” zombies to the model 

 
Unlike previous portrayals of the undead as roughly the same in physical appearance, 
aggressiveness, and attack capability across individuals,  Left 4 Dead, a popular video game created 
by gaming powerhouse Valve Corporation, is unique in creating two distinct subfamilies of 
zombies: the Common Infected7  and Special Infected. The most common zombie group the player 
encounters is, as anticipated, the Common Infected. However, by some mysterious biological 
process, a small percentage of humans experience a more physiologically impressive 
transformation into Special Infected, with heightened strength, intelligence, and particular 
anatomical nuances. Approximate percentages of each infection strain are given below in a pie 
chart found on a poster during game-play: 
 
 

 
Figure 4: The ratios of the stands of Green Flu infections, in-game and reformatted for easy 
viewing8 

                                                 
7  http://left4dead.wikia.com/wiki/Common_Infected 

8  http://left4dead.wikia.com/wiki/Green_Flu 
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The Common Infected zombies are Left 4 Dead’s version the archetypal “zombie” that has 
remained a fixture in nearly all forms of popular media. While not as slow-moving and shambling 
as other depictions (such as George Romero’s Night of the Living Dead9 zombies), they are still 
comparatively weak, lack most higher-order motor control functions, and are "as easy to kill as any 
normal human is” ("Common Infected"). The power of the Common Infected lies in their ability to 
attack in large, synchronized groups, known as “The Horde.” Ajraldi, Pittavino, and E. Venturino [1] 
provide a method for modeling herd behavior in two interacting species via a square root term- that 
is, since our population is spread over a two-dimensional domain, the density square root will 
account for the individuals lying along the edge of their respective region. Thus, replacing the 
general Z equation (1) with the more specialized Horde zombies, the equations governing our 
model become: 

(9)  ′ =  − √ −  

(10)  ′ = + √ −  

(11)  ′ = √ +  − √ 

 
3.3 “General” Dynamics: The Hunter and The Charger10       
 
These two zombies, distinct in respective traits and powers, will be modeled from roughly the same 
differential equation; for ease of organization, they are grouped together by their mathematical, not 
anatomical, relatedness. The Hunter is a Special Infected notable for its increased speed, agility, 
and relative absence of conspicuous physical mutations. Their equation, hence, is merely a special 
case of the general Zombie class from the model in [1], and accounting for all respective rates: 
 

(12)  ′ =  +  −   
 

The Charger is a large Special Infected that also has increased speed abilities but uses them to 
instead charge at a group of Survivors, sending them flying through the air. Following the equation 
setup above, we have: 

(13)  ′ =  +  −   
 
 
3.4 “In Tandem” Dynamics: The Jockey and The Boomer11 

                                                 
9 https://en.wikipedia.org/wiki/Night_of_the_Living_Dead 
10 http://left4dead.wikia.com/wiki/The_Hunter           http://left4dead.wikia.com/wiki/The_Charger 

11 http://left4dead.wikia.com/wiki/The_Jockey          http://left4dead.wikia.com/wiki/The_Boomer 
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The Jockey and the Boomer, denoted by J and B, respectively, display "in tandem" population 
dynamics - that is, the effectiveness of other zombies increases given their presence in the system. 
Specifically, the Boomer attacks the human players by vomiting on them. This vomit attracts the 
Common Infected (Horde, H) zombies, and hence the likelihood of successful Horde attacks is 
increased with the presence of Boomers. The related equations are: 
 

(14)  ′ =  +  −   

(15)   ′ =  +  −   

(16)   ′ = √( ) +  − √ 

 

3.5 “Survivor Presence Proportional” Dynamics: The Smoker, The Tank, and The 

Witch12 

The Smoker, the Tank, and the Witch, (M, K, and W, respectively) are characterized by varying 
success rates based on the number of human survivors present in the system and their interactions 
with these survivors.  Markedly stronger and more resistant than the aforementioned zombie classes, 
their corresponding equations are: 

(17)  ′ −  +  − ( ) 
(18)  ′ −  +  − ( ) 
(19)  ′ = ( ) +  −   

By visiting website http://matrix.skku.ac.kr/2014-Zombie-Model/main.htm, you can view the open-
source Sage code and these mobile-tailored population trajectories in a convenient and interactive 
format. The following Sage code, while extensive, should we fairly easy to follow by the reader at 
this point.  All zombies are added continuously, and attack/defense rates were calculated by in-
game values are mentioned above. 
 
 

                                                 
12  http://left4dead.wikia.com/wiki/The_Smoker      http://left4dead.wikia.com/wiki/The_Tank   

http://left4dead.wikia.com/wiki/Witch 



10 
 

@interact 
def zombies(human_initial= slider(1,300,1,50,label='initial amount of humans'),  
    zombies_initial_h = slider(1,50,1,5,label='initial amount of common infected zombies'),  
    zombies_initial_b = slider(1,50,1,2,label="initial amount of The Boomer"),  

zombies_initial_m = slider(1,50,1,2,label='initial amount of The Smoker'),  
zombies_initial_n=slider(1,50,1,2,label='initial amount of the Hunter'),  
zombies_initial_k = slider(1,50,1,1,label='initial amount of the Tank'), 
zombies_initial_w = slider(1,50,1,1,label='initial amount of the Witch'),  
mm=slider(0,1,0.001,0.2, label='The Witch elusiveness rate'),  
zombies_initial_c = slider(1,50,1,1,label='initial amount of the Charger'),  
zombies_initial_j = slider(1,50,1,1,label='initial amount of the Jockey'),  
a2 = slider(0,1,0.01,0.69,label='human birth rate'),  
deathtimes= slider(0,1,0.001,0.005, label='human natural death rate'),  
timelim = slider(0,400,10,60,label='maximum time')):  

       
    alpha_common = 0.09 
    alpha_boomer=0.09 
    alpha_smoker=0.083544 
    alpha_hunter=0.083544 
    alpha_tank=0.005 
    alpha_witch=.067404 
    alpha_charger=0.076012 
    alpha_jockey=0.08193 
 
    #infection rates from Removed population  
    zeta_common = 0.063 
    zeta_boomer = 0.006 
    zeta_smoker = 0.007 
    zeta_hunter = 0.009 
    zeta_tank = 0.003 
    zeta_witch = 0.004 
    zeta_charger = 0.004 
    zeta_jockey = 0.004 
         
    #attack rates from damage done by primary attack  
    beta_common = 0.005 
    beta_witch=0.09 
    beta_boomer=.007157 
    beta_smoker=0.010897 
    beta_hunter=0.012335 
    beta_tank=0.046853 
    beta_charger=0.012335 
    beta_jockey=0.007157 
 
    t,s,h,b,m,r,n,k,w,j = var("t,s,h,b,m,r,n,k,w,j")  
    P = desolve_system_rk4([(a2)-(beta_common*s*sqrt(h)*(b/(s+1)))-(beta_boomer*s*b) 

-(beta_smoker*s*m*(1/((s^2)+1)))-(beta_hunter*s*n)-(beta_tank*s*k) 
-(beta_witch*s*w*(1/(1+mm*w)))-(beta_jockey*s*j)-(deathtimes*s), 
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(beta_common*s*sqrt(h))+(zeta_common*r)-(alpha_common*s*sqrt(h)), 
(beta_boomer*s*b)+(zeta_boomer*r)-(alpha_boomer*b*s), 
(deathtimes*s)+(alpha_common*s*sqrt(h))+(alpha_boomer*s*b)+(alpha_smoker*s*m)  
+(alpha_hunter*s*n)+(alpha_tank*k*s*(s/(k+1)))+(alpha_witch*w*s)-(zeta_common*r) 
-(zeta_boomer*r)-(zeta_smoker*r)-(zeta_hunter*r)-(zeta_tank*r)-(zeta_witch*r) 
-(zeta_jockey*r), 
(beta_smoker*s*m)+(zeta_smoker*r)-(alpha_smoker*m*s), 
(beta_hunter*s*n)+(zeta_hunter*r)-(alpha_hunter*n*s), 
(beta_tank*s*k)+(zeta_tank*r)-(alpha_tank*k*s*(s/(k+1))), 
(beta_witch*s*w*(1/(1+mm*w)))+(zeta_witch*r)-(alpha_witch*w*s), 
(beta_jockey*s*j)+(zeta_jockey*r)-(alpha_jockey*j*s)], 
[s,h,b,r,m,n,k,w,j],ics=[0,human_initial,zombies_initial_h, zombies_initial_b,  
0, zombies_initial_m, zombies_initial_n, zombies_initial_k, zombies_initial_w,  
zombies_initial_j],ivar=t,end_points=timelim)  

     
    #survivors 

Ps = list_plot([[t,s] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,  
legend_label='People (yay!)') 

     
#common infected 
Ph = list_plot([[t,h] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='red',  
legend_label='Common Infected') 

 
    #the Boomer 

Pb = list_plot([[t,b] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='green',  
legend_label='The Boomer') 

 
    #the Smoker 

Pm = list_plot([[t,m] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='purple',  
legend_label='The Smoker') 

 
    #the Hunter 

Pn = list_plot([[t,n] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='orange',  
legend_label='The Hunter') 

 
    #the Tank 

Pk = list_plot([[t,k] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='black',  
legend_label='The Tank') 

 
    #the Witch 

Pw = list_plot([[t,w] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='pink',  
legend_label='The Witch') 

 
    #the Jockey 

Pj = list_plot([[t,j] for t,s,h,b,r,m,n,k,w,j in P],plotjoined=True,rgbcolor='yellow',  
legend_label='The Jockey') 

    show(Ps+Ph+Pb+Pm+Pw+Pj+Pn+Pk) 
Table 3: Sage code 
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Figure 5: The Zombie SZR model and its various links and applications 

These population trajectories, as well as in-depth zombie profiles, mathematical analyses, and other 
interesting “apocalyptic” math resources and fun tidbits, are available through our mobile-adapted 
website above. 
 

4.  Conclusions  
 
Through this research, we have introduced our easy-to-view Zombie Population Model as a 
pedagogical Sage Tool. Readers need resources that appeal to their extracurricular interests and 
bolster academic curiosity by showing mathematics in a way previously unexplored; namely, how 
mathematics relates to pop culture in the form of zombies and video games [3].  In general, 
educators are finding academically stimulating ways to incorporate mathematics learning into video 
games and vice versa.  Being able to connect a reader's extracurricular interests to an academic area 
he or she previously struggled in can not only increase interest in the subject as a whole, but 
encourage the student to preserve through difficult moments and, hence, find satisfaction in their 
work. Technological tools that can combine a reader’s independent interests with relevant 
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mathematically-driven content have been shown to improve student learning in various areas [7].  
Bolstering interest in population models and differential equations can, in turn, bolster interest in all 
areas of mathematics [10]. Being able to present these tools in an easy-to-view, open-source, free 
format online furthers this goal and gives the power of mathematical manipulation directly to 
students of various math levels and disciplines. 
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