Spri	ng 201	7, L <i>l</i>	A Midte	erm Exai	<mark>n</mark> Solu	tion-채점용	(50 min	In class Exam)		S	ign
Course		Linea	ar Algebr	a			Prof.	Sang-Gu Lee			
Class #	41		42	Major		Student No.			Name		
(mark) 분반	41	or	42	전공		학번			Name		
* Notice	http://matr	ix.skku	.ac.kr/LA/						To	tal Sc	ore (100 pt)
1. Fill out	the above	boxes	before you	start this Ex	am. (학년	번, 이름 등을 기입히	고 감독자	나 날인)	Off	ine	Participation
2. Honor (Code: (시험	부정행	위시 해당	교과목 성적이	"F" 처리됨	팀은 물론 징계위원회	에 회부됨	실 수 있습니다.)	Exan	ı 86	14
(감독위 독위원기	원의 지시기 께 제출한 최	가 있기 후에 퇴실	전에는 고 일하시기 비	·랍니다.)	ŀ갈 수 없⊆	으며, 감독위원의 퇴실 . (중간고사까지는		있으면 답안지를 감 같안도 OK)			14

```
var('a, b, c, d')
                                         # Define variables
                                                                                                                                      # Define variables
                                                                                           var('x, y')
eq1=3*a+3*b==12
                                          # Define equation1
                                                                                           f = 7*x^2 + 4*x*y + 4*y^2-23
                                                                                                                                         # Define a function
eq2=5*a+2*b==13
                                          # Define equation2
                                                                                           implicit plot( f, (x, -10, 10), (y, -10, 10)) # implicit Plot
solve([eq1, eq2], a,b)
                                          # Solve eq's
                                                                                           parametric_plot((x,y), (t, -10, 10), rgbcolor='red') # Plot
A=matrix(QQ, 3, 3, [3, 0, 0, 0, 0, 2, 0, 3, 4]);
                                                                                           plot3d(y^2+1-x^3-x, (x, -pi, pi), (y, -pi, pi))
x=vector([3, 1, 2])
                                         # Define vector x
                                                                                           A=random_matrix(QQ,7,7) # random matrix of size 7 over Q
A.augment(x)
                                          # [A: x]
                                                                                           F=random_matrix(RDF,7,7) # random matrix of size 7 over R
A.echelon_form() 또는 A.RREF() # Find RREF
                                                                                           P.L.U=A.LU()
                                                                                                                         # LU (P: Permutation M. / L, U
A.inverse()
                                        # Find inverse
                                                                                           print P, L, U
A.det()
                                        # Find determinant
                                                                                          \begin{array}{ll} h(x,\ y,\ z) = [x+2^*y-z,\ y+z,\ x+y-2^*z] \\ T = linear\_transformation(U,\ U,\ h) \ \# \ L.T. \\ print\ T.kernel() \ \# \ Find\ a\ basis\ for\ kernel(T) \\ C=column\_matrix([x1,\ x2,\ x3]) \\ D=column\_matrix([y1,\ y2,\ y3]) \\ aug=D.augment(C,\ subdivide=True) \\ Q=aug.rref() \end{array}
A.adjoint()
                                        # Find adjoint matrix
                                        # Find charct. ploy
A.charpoly()
A.eigenvalues()
                                         # Find eigenvalues
A.eigenvectors_right()
                                         # Find eigenvectors
                                         # Find rank of A
A.rank()
A.right_nullity()
                                         # Find nullity of A
                                                                                            [G,mu] = A.gram\_schmidt() \qquad \# \ G-S \\ B = matrix([G.row(i)/G.row(i).norm() \ for \ i \ in \ range(0,4)]); \ B \ \# 
var('t')
                               # Define variables
                                                                                           A.H # conjugate transpose of A
x=2+2*t
                                # Define a parametric eq.
y = -3*t-2
                                                                                           A.jordan_form() # Jordan Canonical Form of A
                               # Are A and B same?
                                                                                                            <Sample Sage Linear Algebra codes>
bool( A== B)
```

I. (1pt x 20= 20pt) True(T) or False(F). Let s be a set of m vectors in \mathbb{R}^n .

- **1.** (F) The set of all linear combinations of two vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^n is a plane. (two nonzero vectors)
- **2.** (\mathbf{T}) A set of vectors in \mathbb{R}^n that contains a zero vector is linearly dependent.
- **3.** (F) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set, then so is the set $\{k\mathbf{v}_1, k\mathbf{v}_2, k\mathbf{v}_3\}$ for any scalar k. (nonzero)
- **4.** (F) Any $n \times n$ matrix can be written as a product of elementary matrices. (nonsingular)
- **5.** (F) T(x, y, z) = (2x + 3y, -x + z 2) is a linear transformation. (not LT)
- **6.** (F) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is surjective, $\ker T = \{0\}$. (injective)
- **7.** (F) If A is invertible, 0 is an eigenvalue of A. (nonzero)
- **8.** (F) $\sigma = (3 \ 4 \ 1 \ 2)$ is an odd permutation. *(even)*
- **9.** (F) If \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 in \mathbb{R}^3 are independent vectors, then $\det[\mathbf{v}_1:\mathbf{v}_2:\mathbf{v}_3]=0$. (nonzero)
- **10.** (\mathbf{T}) If A is a $n \times n$ real orthogonal matrix, then the linear mapping $\mathbf{x} \mapsto A\mathbf{x}$ preserves length.
- 11. (F) For a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, if $T(\mathbf{u}) = T(\mathbf{v}) \Rightarrow \mathbf{u} = \mathbf{v}$, then it is called surjective. (injective)
- 12 (F) If T is linearly independent and T is a subset of S, then S is linearly independent. (if S is a subset of T)
- **13** (F) For any $n \times n$ matrix A with n > 1, $\det(\operatorname{adj} A) = (\det A)^{n-1}$. *(only if nonsingular)*
- **14** (F) Let $A = [a_{ij}] \in M_{m \times n}$ Then, n columns $A^{(1)}, A^{(2)}, \dots, A^{(n)}$ of A span a row space of A. (column space)
- **15** (F) In \mathbb{R}^n , m(>n) vectors are always linearly independent. (dependent)
- **16** (F) A line $\{\mathbf{x}_0 + t\mathbf{v} \mid t \in \mathbb{R}\}$ forms a subspace through \mathbf{x}_0 and parallel to \mathbf{v} . (only if \mathbf{x}_0 is a zero vector)
- 17 (F) A normal vector is same as the orthogonal complement of \mathbf{n} , $\mathbf{n}^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{n} \cdot \mathbf{x} = 0 \}$. (no)
- **18.** (F) A normal vector of z = -3x + 2y + 4 is $\mathbf{n} = (-3, 2, 4)$. (no)
- **19** (**T**) Let A be an $n \times n$ matrix. For any i, j ($1 \le i, j \le n$) $a_{1j} C_{j1} + a_{2j} C_{j2} + \cdots + a_{nj} C_{jn} = 0$. (C_{ij} : cofactors)
- **20.** (F) The homogeneous system $\sum_{j=1}^{n} a_{ij}x_j = 0$ for $1 \le i \le m$ always has a non trivial solution if m > n. (if m < n)

Student No.	Name	
-------------	------	--

II. (3pt \times 5 = 15pt) State or Define (Fill the boxes and/or state).

1. Vector Equation: A plane W in \mathbb{R}^4 can be uniquely obtained by passing through a point $\mathbf{x}_0 = P_0(x_0, y_0, z_0, w_0)$ and three nonzero vectors \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 in \mathbb{R}^4 that are linearly independent. Let $\mathbf{x} = P(x, y, z, w)$ be any point on W, then $\mathbf{x} - \mathbf{x}_0$ can be expressed as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 .

$$\mathbf{x} - \mathbf{x}_0 = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + t_3 \mathbf{v}_3 = \mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + t_3 \mathbf{v}_3$$

where t_1 , t_2 and t_3 are parameters in $\mathbb R$ (i.e. $-\infty < t_1, t_2, t_3 < \infty$).

2. For a point $P_0(x_0, y_0, z_0, w_0)$ and a plane $\pi: ax + by + cz + dw + f = 0$, the distance D from the point to the plane is

3. For vectors $\mathbf{x} = (x_1, x_2, ..., x_n)$, $\mathbf{y} = (y_1, y_2, ..., y_n)$ in \mathbb{R}^n , tell me how you can define the angle θ between \mathbf{x} and \mathbf{y} .

 $\text{There exist } \theta, \quad 0 \leq \theta \leq \pi \qquad \text{such that} \\ |\mathbf{x}\cdot\ \mathbf{y}| \leq \|\ \mathbf{x}\| \|\ \mathbf{y}\| \qquad => \qquad \qquad \mathbf{x} \cdot \ \mathbf{y} = \|\ \mathbf{x}\| \|\ \mathbf{y}\| \cos \theta$

4. [Determinant] The determinant of an $n \times n$ matrix $A = [a_{ij}]$ is defined as

Let $A = [a_{ij}]$ be an $n \times n$ matrix. We denote the determinant of matrix A as det(A) or |A| and define it as follows.

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \, a_{1\sigma(1)} a_{2\sigma(2)} \, \cdots \, a_{n\sigma(n)}$$

5. [kernel] Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then

The kernel of $T = \ker T =$

The set of all vectors in \mathbb{R}^n , whose image becomes $\mathbf{0}$ by T, is called kernel of T and is denoted by $\ker T$. That is, $\ker T = \{\mathbf{v} \in \mathbb{R}^n \mid T(\mathbf{v}) = \mathbf{0}\}$

III. (3pt x 13 = 39pts) Find, Compute or Explain (Fill the boxes) :

1. Find a, b, c of parabolic equation $y = ax^2 + bx + c$ which passes through (1,3), (2,5) and (3,5). Vandermonde matrix.

A=matrix(QQ, 2, 2, [-1, 1, 2, 1])	A=matrix(QQ, 3, 3, [1, 1, 1, 4, 2, 1, 9, 3, 1])
A.det()	A.det()
B=A.inverse()	B=A.inverse()
y=matrix(QQ, 3, 1, [3, 5, 5])	y=matrix(QQ, 3, 1, [3, 5, 5])
By=B*y	By=B*y
print By	print By
[-3]	[-1]
[-4]	[5]
[-2]	[-1]

$$\Rightarrow |A|=-2$$
 $\mathbf{x}=\begin{bmatrix} -1\\5\\-1\end{bmatrix}$ $\therefore a=-1$, $b=5$, $c=-1$

2. Find the volume of parallelepiped which is generated by three vectors, (8,0,3), (0,-4,6) and (4,2,-2).

Let
$$\mathbf{y}_1 = (8,0,3)$$
 $\mathbf{y}_2 = (0,-4,6)$ $\mathbf{y}_3 = (4,2,-2)$ The volume of parallelepiped is $\begin{bmatrix} 8 & 0 & 3 \\ 0 & -4 & 6 \\ 4 & 2 & -2 \end{bmatrix} = 16$

Double checked by Sage. http://math3.skku.ac.kr/home/pub/289

x1=matrix(2,1,[6,3])	a=A.det()
x2=matrix(2,1,[2,7])	b=B.det()
y1=matrix(3,1,[8,0,3])	print a.abs()
y2=matrix(3,1,[0,-4,6])	print b.abs()
y3=matrix(3,1,[4,2,-2])	
	36
A=x1.augment(x2)	
B=y1.augment(y2).augment(y3)	16

3. Find the degree 3 polynomial $y = ax^3 + bx^2 + cx + d$ which passes through the following four points.

$$(0, 1), (1, -1), (2, -1), (3, 7)$$

$$\begin{cases} 1 = d \\ -1 = a+b+c+d \\ -1 = 8a+4b+2c+d \\ 7 = 27a+9b+3c+d \end{cases} = > \begin{cases} -2 = a+b+c \\ -2 = 8a+4b+2c \\ 6 = 27a+9b+3c+d \end{cases}$$

$$=> a = 1$$
 , $b = -2$, $c = -1$, $d = 1$ $\therefore y = x^3 - 2x^2 - x + 1$

4. Let the characteristic polynomial of matrix A be $p(\lambda) = (\lambda - 2)(\lambda - 1)(\lambda + 3)$. Find eigenvalues of matrix A^3 .

The eigenvalues of matrix
$$A^3$$
 is λ^3 , \therefore $\lambda'_1 = 1$, $\lambda'_2 = 8$ and $\lambda'_3 = -27$.

5. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the standard matrix A = [T] of T has the following relation for $\mathbf{x} \in \mathbb{R}^n$. $T(\mathbf{x}) = A\mathbf{x} \quad \forall \ \mathbf{x} \in \mathbb{R}^n$ where $A = [T(\mathbf{e}_1): T(\mathbf{e}_2): \dots : T(\mathbf{e}_n)]$.

6. When you have eigenspaces of $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ corresponding to each eigenvalue 0 and 5.

Show that they are orthogonal to each other in the plane.

The eigenspace of A corresponding to $\lambda_1=0$ is $E_1=<\begin{bmatrix}2\\-1\end{bmatrix}>$

The eigenspace of A corresponding to $\lambda_2 = 5$ is $E_2 = \langle \begin{bmatrix} 1 \\ 2 \end{bmatrix} \rangle$.

For any \mathbf{y}_1 in E_1 and any \mathbf{y}_2 in E_2 , [Show $<\mathbf{y}_1,\ \mathbf{y}_2>=0$]

 $\mathbf{y}_1 = s \mathbf{x}_1$ and $\mathbf{y}_2 = t \mathbf{x}_2$ for some t and s resp., then

$$<\mathbf{y_1}, \ \mathbf{y_2}> \ = <\ s\ \mathbf{x_1}, \ t\ \mathbf{x_2}> \ =\ s\ t\ <\mathbf{x_1}, \mathbf{x_2}> \ =\ s\ t\ (2\times 1-1\times 2)=0$$

- \Rightarrow \mathbf{y}_1 and \mathbf{y}_2 are orthogonal.
- \therefore E_1 and E_2 are orthogonal to each other in the plane.

7. Let A be an $n \times n$ matrix. Find 2 statements which is not equivalent to "the matrix A is invertible."? (Choose two)

- (1) Column vectors of A are linearly dependent.
- (2) Row vectors of A are linearly independent.
- (3) $A\mathbf{x} = \mathbf{0}$ has a unique solution $\mathbf{x} = \mathbf{0}$.
- (4) For any $n \times 1$ vector **b**, $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- (5) A and I_n are row equivalent.
- (6) A and I_n are column equivalent.
- (7) $\det(A) \neq 0$
- (8) $\lambda = 0$ is an eigenvalue of A.
- (9) $T_A \colon \mathbb{R}^n \to \mathbb{R}^n$ by $T_A(\mathbf{x}) = A \mathbf{x}$ is injective
- (10) T_A : $\mathbb{R}^n \to \mathbb{R}^n$ by $T_A(\mathbf{x}) = A \mathbf{x}$ is surjective.

1

8

8. Fill out a Sage command and answer box to find eigenvalues of A and corresponding eigenvectors.

$$A = \begin{bmatrix} 4 & -1 & 0 & -1 \\ -6 & -3 & 6 & -1 \\ 0 & -2 & 4 & -2 \\ 6 & 5 & -6 & 3 \end{bmatrix}$$

A=matrix([[4, -1, 0, -1], [-6, -3, 6, -1], [0, -2, 4, -2], [6, 5, -6, 3]]) print A.eigenvectors_right()

실행(Evaluate)

[(2, [(1, 1, 2, 1)], 1), (-2, [(0, 1, 0, -1)], 1), (4, [(1, 0, 1, 0), (0, 1, 1, -1)], 2)]

Answer

eigenvalues of A = 2, -2, 4, 4.

corresponding eigenvectors: (1, 1, 2, 1), (0, 1, 0, -1), (1, 0, 1, 0), (0, 1, 1, -1) in the order

9. Let $\mathbf{x}, \mathbf{z} \in \mathbb{R}^2$ be moved by two linear transformations T and S , where

$$T(\mathbf{x}) = \begin{bmatrix} x_1 + 2x_2 \\ x_2 \end{bmatrix} \ , \qquad S(\mathbf{z}) = \begin{bmatrix} z_1 \\ -z_1 + z_2 \end{bmatrix} \ .$$

Find $(S \circ T)(\mathbf{x})$

Solution $[T] = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, [S] = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} S & \circ & T \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$

10. Find the dimension of the null space of the following matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 4 & 4 \\ 2 & 3 & 4 & 9 & 16 \\ -2 & 0 & 3 - 7 & 11 \end{bmatrix} \text{ where RREF } (A) = \begin{bmatrix} 1 & 0 & 0 & 2 - 1 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 0 & 1 - 1 & 3 \end{bmatrix}$$

Solution

the dimension of the null space =

2

12. Let
$$[R_{\theta}] = \begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_0 \\ 0 & 1 & -y_0 \\ 0 & 0 & 1 \end{bmatrix}$$
. Find $[R_{\theta}] \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$.

Solution

$$\text{Answer}) \qquad \left[R_{\theta}\right] \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right] = \left[\begin{array}{c} x\cos(\theta) - x_0\cos(\theta) - y\sin(\theta) + y_0\sin(\theta) + x_0 \\ x\sin(\theta) - x_0\sin(\theta) + y\cos(\theta) - y_0\cos(\theta) + y_0 \end{array} \right]$$

12. Consider
$$A\mathbf{x} = \mathbf{y}$$
 where $A = \begin{bmatrix} 7 - 2 - 2 & 1 & 0 \\ 3 & 0 - 2 & 1 & 2 \\ 12 - 4 - 3 & 2 & 0 \\ 6 - 8 - 4 & 6 & 4 \\ 1 - 2 - 2 & 1 & 6 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 0 \\ 2 \\ 4 \\ 2 \\ 1 \end{bmatrix}$. You were asked to find

- (1) Augment matrix [A: y] (2) RREF(A) (3) Det A (4) Inverse of A (4) characteristic polynomial of A (5) all eigenvalues of A
- (6) all eigenvectors of A. The following is your answer. Fill out the blanks to find each.

```
1) Step 1: Browse http://math3.skku.ac.kr or http://math1.skku.ac.kr/ (or https://cloud.sagemath.com etc)
```

- 2) Step 2: Type class/your ID: (2017LA) and PW: (****)
- 3) Step 3: Click "New worksheet (새 워크시트)" button.
- 4) Step 4: Define a matrix \boldsymbol{A} in the first cell in rational (QQ) field.

- 5) Step 5: Type a command to find augment matrix [A: y] A.augment(y) and evaluate
- 6) Step 6: Type a command to find $\mathbf{RREF}(A)$ (A.RREF()) and evaluate.
- 7) Step 7: Type a command to find **determinant of** A (A.det()) and evaluate.
- 8) Step 8: Type a command to find inverse of A (A.inverse()) and evaluate.
- 9) Step 9: Type a command to find char. polynomial of A (A.charpoly()) and evaluate.

•••

10) Last step: Give 'print' command to see what you like to read.

Now we have some out from the Sage.

RREF(A) = Identity matrix of size 5 det(A) = 144

inverse(A) =

$$\begin{bmatrix} -4 & 1/3 & 7/3 & -1/6 & 0 \end{bmatrix}$$

characteristic polynomial of (A) = $x^5 - 16*x^4 + 95*x^3 - 260*x^2 + 324*x - 144$

eigenvalues of $A = \{ 6, 4, 3, 2, 1 \}$

eigenvectors = [(6, [(0, 1, 0, 2, 2)], 1), (4, [(1, 1, 2, 3, 1)], 1), (3, [(1, 1, 2, 2, 1)], 1), (2, [(0, 1, 0, 2, 0)], 1), (1, [(1, 1, 3, 2, 1)], 1)]

Write what (4, [(1, 1, 2, 3, 1)], 1) means for Eigenvectors of A:

(1, 1, 2, 3, 1) is only one L.I. eigenvector of A corresponding the eigenvalue 4. or

4 = eigenvalue, (1, 1, 2, 3, 1): corresponding eigenvector, 1, algebraic multilpicity of 4)

V. (5 pt \times 3 = 15pt) Explain or give a sketch of proof.

1. Define a transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ by $T(a,b,c) = \begin{bmatrix} a+b \\ 2c-a \end{bmatrix}$. Show it is a matrix transformation. (so a LT)

Solution

$$T(\mathbf{x}) = A\mathbf{x}$$
 where $A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}_{2 \times 3}$. So it is a LT.

2. Let a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ transforms any vector $\mathbf{x} = (x, y) \in \mathbb{R}^2$ to a symmetric point to the line which passing through the origin with slope θ . Find the transformation matrix $H_{\theta} = [T(\mathbf{e}_1): T(\mathbf{e}_2)]$ with the aid of following pictures.

Picture: The image of the standard basis by a symmetric transformation to the line with slope θ .

$$(\text{Sol}) \ \ H_{\theta} = [T(\mathbf{e}_1): \ T(\mathbf{e}_2)] = \begin{bmatrix} \cos 2\theta & \cos \left(\frac{\pi}{2} - 2\theta\right) \\ \sin 2\theta & -\sin \left(\frac{\pi}{2} - 2\theta\right) \end{bmatrix}$$

$$= \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} . \quad \blacksquare$$

3. Linear transformation (Linear operator): Let's define $T: \mathbb{R}^2 \to \mathbb{R}^2$ as a projective transformation, which transforms any vector \mathbf{x} in R^2 to projection on a line which passes through the origin and has an angle θ with x-axis. For the given transformation T, let's define P_{θ} as a corresponding standard matrix. As shown by the right hand side picture, $P_{\theta}\mathbf{x} - \mathbf{x} = \frac{1}{2}(H_{\theta}\mathbf{x} - \mathbf{x})$ <same direction with half length>. Now by using the matrix representation of symmetric transformation $H_{\theta} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$, find the standard matrix for T.

Figure $\,\,\,\,\,\,$ The relationship between symmetric $\,\,\,\,$ transformation $\,\,\,\,$ and projective transformation to the line with slope $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$

(Sol)
$$P_{\theta} \mathbf{x} - \mathbf{x} = \frac{1}{2} \left(H_{\theta} \mathbf{x} - \mathbf{x} \right) \Rightarrow P_{\theta} \mathbf{x} = \frac{1}{2} H_{\theta} \mathbf{x} + \frac{1}{2} \mathbf{x} = \frac{1}{2} H_{\theta} \mathbf{x} + \frac{1}{2} I \mathbf{x} = \frac{1}{2} (H_{\theta} + I) \mathbf{x}$$

$$\Rightarrow P_{\theta} = \frac{1}{2} (H_{\theta} + I) = \begin{bmatrix} \frac{1}{2} (1 + \cos 2\theta) & \frac{1}{2} \sin 2\theta \\ \frac{1}{2} \sin 2\theta & \frac{1}{2} (1 - \cos 2\theta) \end{bmatrix} = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$

Class #	44		40
(mark) 분반	41	or	42

	tion and more	• •		me:	7. 10/1
<fill form,="" i<="" it,="" print="" th="" this=""><th></th><th></th><th></th><th></th><th></th></fill>					
(시험전에 프린트하여, 빈	!칸을 채워서 제출하기	H나, 시험 중에 확	인하여 채워서	시험 시간 중0	에 제출하면 됩니
1. (8 pt) Particij	pations				
(1) QnA Participations	Numbers < Check	yourself>: ea	ch weekly (F	om Sat - ne	ext Friday)
Week 1:	2:		3:		4:
Week 5:	6:		7;		8:
	Total#:	3*8 = 24	(Q:	A:)	
Online Participation:		(1-8th week)			
Off-line Participation/ Ab	sence:	(2*7 - 1 holida	ay = 13 off line	e classes)	
(2) Your Special Contrib	ution:	(No.)		
2) Tour Special Contrib		(210)	,		
2. (5 pt) Your pres	sentation of Sol	lutions in on	e Chapter.		
2. (5 pt) Your pres)
(1) Your Team Numbe	r () and Team	members name)
	r () and Team	members name)

3. (1pt, Bonus) Write anything you like to tell.