SKKU Math Lectures and Labs

                            by   (Use Chrome browser, not IE)


0. [SKKU Discrete Mathematics (Spring, 2019)]

(2019, Spring) SKKU Discrete Mathematics(이산수학) Lectures

DM Ch 1 Set and Logic    



DM Ch 2 Proofs (1)       

DM Ch-2-Proofs (2)     



[Ch 1 and Ch2 (Solution) Student Presentation]


DM Ch 3-1 Functions     

DM Ch 3-2, 3-3, String, Relation

DM Ch 3-4, 3-5, Equivalence Relations, Matrix of Relation,




[Ch 3 (Solution) Student Presentation]  


Ch. 4 Algorithms




Ch. 5 Introduction to Number Theory DM


DM 이산수학 Sec 5 1, 정수론 1, divisor

 DM 이산수학 Sec 5.2, 5.3 정수론 2, Number Theory 2, 진법, 유클리드알고리즘



[Ch 4 & 5 (Solution) Student Presentation]  


DM Review of the first 5 Chapters

Midterm PBL Student Presentation 1 (Dan Din, 김찬호)


Midterm Exam 1 (Sample)   

Part V. [20 Pts] Spring 2019, DM Midterm Exam (Participation) ( 20 point/100)

<Fill this form, Print it, Bring it and submit it just before your Midterm Exam.>

(시험전에 프린트하여, 빈칸을 채워서 제출하거나, 시험 중에 확인하여 채워서 시험 시간 중에 제출하면 됩니다.)


1. (10 pt) PBL(Problem-Project Based Learning) Participations, (Quantity)

QnA Participations Numbers <Check yourself> : each weekly (From Friday - next Thursday)

QnA 참여 회수 <매주 3회 이상 필수 QnA에서 직접 확인하세요> : 각 주별 (금요일에서 목요일)

Week 1 : 2: 3: 4:

Week 5 : 6: 7: 8:

Total# : (Q: A: )

Online Lecture Participation (온라인 출석 회수): / (1-8th week)

Off-line Lecture Participation/ Absence (오프라인 출석/결석 회수) / (1-8th week)


2. (5 pt) What is your most important contribution or founding that you shared with others in QnA.(Quality)


Some from your problems with +Bonus/Final OK by SGLee

3. (5 pt) YOUR PBL(Problem-Project Based Learning) Team/Project=In-depth 심화학습 Participations

(1) Give a tentative name of your Team/Leader/Members: .

(2) [Project Chapter for each team] Your team will do Project on the following Chapter and will present what you did at the end of May. You may choose 1 or 2 Chapters of your interest in the Textbook.

[Team A]

[Team B]

[Team ?]

[Team ?]

[Independent Team]


(3) (Write what project you like to do!) You may choose 1 or 2 Problems in the Textbook Computer Exs. etc. Take a look. What will be your possible project on the Chapter and your role in your Team (Leader, Idea, Solve, Prove, Coding, Typing, Presentation etc). SQSA, 각 팀마다 맡은 Chapter 안의 Solved and Revised 된 문제들을 Final OK 받는 것이 기본이고 그 과정에서 배운 내용들과 관련하여 심화 학습을 하고 그 결과물을 발표하는 것입니다.


4. (1pt, Bonus) Write anything you like to tell me. (What are things that you have learned and recall well from QnA and HW/PBL participation?, 개인/동료와 같이 LA 강좌를 (PBl/Filpped/Action learning) 학습 하면서 배우거나 느낀 점은?)


2019 Spring Discrete Math

Midterm PBL Presentation Peer review!


Major/S.N.: ___________/______________ Name: ______________





The First or The Best

평가기준 : A (10~25%), B (30~40%), C-D-F (40%) :

+, - your choice


(2019, Spring) SKKU Math History Lectures


수학사-2강-동양수학과 서양수학의 만남   

수학사-3강-대포의 탄생과 미적분학       



수학사-6강-통계학의 탄생                

수학사 7강 보험의탄생 런던대화재        

수학사 8강 위상수학의 탄생                

수학사 9강 마방진, 추측통계학(stochastic)의 탄생  


Calculus 1


Calculus 2


0. [SKKU Discrete Mathematics (Fall, 2018)]


 [Flipped/PBL/Action Learning]  <2018년 이산수학>  Discrete Math Labs (실습실)


Ch. 1, Sets and Logic &  Ch. 2, Proofs


Ch. 2, Proofs



[Ch 1 and Ch2 (Solution) Student Presentation](문제풀이 발표

Ch. 3, Functions, Sequences, and Relations



 [Ch 3 (Solution) Student Presentation](문제풀이 발표


Ch. 4, Algorithms

Ch-4-Lab   Solutions   

Ch. 5, Introduction to Number Theory



[Ch 4 &5 (Solution) Student Presentation] by Chingis,


Midterm Exam

Ch 6, Counting Methods and the Pigeonhole Principle



[Ch 6 (Solution) Student Presentation](문제풀이 발표

Ch 7, Recurrence Relations



[Ch 7 (Solution) Student Presentation](문제풀이 발표

Ch 8, Graph Theory


Solutions [Ch 8 (Solution) Student Presentation](문제풀이 발표)

Ch 8, Graph Theory (review part 2 Lecture)


Ch 9, Trees



[Ch 9 (Solution) Student Presentation](문제풀이 발표


SKKU Discrete Math, Project-Lottery by Team 1 (강병훈 etc)

SKKU Discrete Math, Project-Cobweb by Team 2 (전종문 etc),

SKKU Discrete Math, PBL 발표김승연

SKKU Discrete Math, Student PBL 발표 1 (김영철 etc),

SKKU Discrete Math, Student PBL 발표 2 (서명원 etc),


[Sage Reference]

1. Discrete Mathematics (Spring, 2018)  [Action Learning] <2018년 이산수학> 은 Discrete Math Labs (실습실) (강의실) (질문과 답변) (문제풀이) (PBL report 보고서) (PBL report Eng, 영문 보고서)

[강의 동영상 & 실습실] 


​DM Ch. 1, Sets and Logic

Lecture Note 
DM Ch. 1, 동영상강의 
Ch 0 Introduction          
1.1, 1.2 Propositions    
1.3, 1.4 Rules of Inference 
1.5, 1.6 Nested Quantifiers

DM Ch. 2, Proofs

Lecture Note
DM Ch. 2, 동영상강의 
2.1, 2.2 More Methods of Proof Problem
2.4, 2.5 Math Ind & Well-Ordering Prop 

DM Ch. 3, Functions, Sequences, and Relations

Lecture Note
DM Ch. 3, 동영상강의 
Functions, Sequences, and Relations 1 
Functions, Sequences, and Relations 2
Functions, Sequences, and Relations 3


DM Ch. 4, Algorithms

Lecture Note

DM Ch. 4, 동영상강의 

DM Ch. 5, Introduction to Number Theory

Lecture Note  

DM Ch. 5, 동영상강의 

5-1  Divisors
5-2  Repr of Integers and Integer Alg
5-3  The Euclidean Algorithm

Review (Ch 1-5)

   PBL 학생 발표 (Ch 1-5 Solutions)

Midterm Exam Solutions :

DM Ch 6, Counting Methods and the Pigeonhole Principle

Lecture Note  

DM Ch. 6, 동영상강의 
6.1 Basic Principles
6.2 Permutations and Combinations
SKKU DM Ch. 6 Catalan Number (Review)

SKKU DM Sec 6.3, 6.7, 6.8, 비둘기집의 원리

DM Ch 7, Recurrence Relations

Lecture Note  


DM Ch. 7, 동영상강의

Ch 7 & 8 Preview QnA :

DM Ch 8, Graph Theory

Lecture Note  


Ch-8-Lab 2

(DM Sec 8.1 동영상강의) Graph Theory

(DM Sec 8.2 동영상강의) Path and Cycle

(DM Sec 8.3 동영상강의) Hamiltonian cycle

(DM Sec 8.4 동영상강의) Shortest Path

DM Ch 9, Trees

Lecture Note  


(DM Ch 9, Part 1) (DM Ch 9, Part 2)


Week 15 : June 8th (Friday) 12PM-3PM Student Presentation : Final PBL 학생 발표, Final Project Presentation

Week 16 : Final Comprehensive Exam : June 15th (Friday) 1PM-2PM

Final Presentation/Exam Record 1

1. SKKU DM Ch. 1-5, 성대 이산수학, Nabil (Passed) & Wang (Passed)(7), PBL and Solutions of Ch 1-5, <--- OK

2. SKKU DM Ch. 1-9, 성대 이산수학, 주경용 (Passed with Honor) (6), PBL and Q&A, Ch1-9, <--- Good

3. SKKU DM Ch. 8, 성대 이산수학, 이세영 (Passed with Honor) (1), PBL and Solutions of Ch 8, 윤소정, <--- Good job

4. SKKU DM Ch. 9, 성대 이산수학, 이대희(Passed)(4), PBL and Solutions of Ch 9, <--- Good job

5. SKKU DM 2018 이산수학, PBL and Solutions of Ch 7 by 이동욱(2), Ch 6 by 김민규(5), <--- Good job

6. SKKU DM 2018 이산수학, QnA Ch 6-9 by 양승환(3), Ch 6-9 all, <--- Good job


CH 10, Network Models (if time permits) 

Ch 11 Boolean Algebras and Combinatorial Circuits (if time permits) 

Ch 12 Automata, Grammars, and Languages (if time permits) 

CH 13 Computational Geometry (if time permits),%203rd%20Ed.pdf 


Before midterm  by 양승환 (YANG, SeungHwan)

I was motivated by the learning activity which is PBL. I can review what I learned until now so I can know what part I forgot. Also, I can study new things that I couldn’tt find. With this activity, I could be proud of myself in studying discrete math. While studying discrete math, I can review what I learned in high school such as set, proposition and algorithm. And, I can know the basis of math is very important to study new things which are very detailed. With discrete math, it is hard for me to have a trouble with the basis of math. It is lucky to take a discrete math class in first semester. Thank you professor SGLee for helping students passionately. It was a great time to make PBL.

                                                After midterm

중간고사 이후 팀 프로젝트를 하면서 색다른 느낌을 받았습니다. 개인 프로젝트는 대부분 수정을 하지 않고 개인이 질문 있는 것을 수정 받고 finalize 하는 것이 였는데 팀으로 할 때는 정반대로 다른 사람들의 질문들을 고쳐주고 finalize 하게 되었습니다. 개인 프로젝트처럼 복습을 하기보단 새로운 것(코딩, 다른 예시)을 배우는 계기가 되었고 수업에서 배웠던 것에만 머무르는 것이 아닌 배운 것 들과 연관된 다양한 것들을 연구하고 찾아보자 라는 생각이 들게 한 시간이었습니다. 그리고 팀 3조로 6,7,8,9 단원을 총 정리하는 임무를 받게 되었는데 정말 좋았습니다. 4단원을 정리를 하니까 힘이 들긴 하지만 다른 조들이 Q&A에 올린 것을 보면서 공부를 하게 되니 팀3조에만 머물러 있는 것이 아니라 다른 조들이 한 것들을 활용해서 공부하고 복습할 수 있었습니다. 이번 팀 프로젝트는 저에게 매우 만족스러웠으며 다 같이 협동하고 열심히 해준 우리 조에게 정말 감사하고 수고했다는 말을 전해주고 싶습니다. 

저희 팀 3(양승환, 이상철, 양승찬, 이혜정, 강민구)에서 모든 조원이 참여를 하게 되어서 너무 기분이 좋습니다. 처음에 누구 한 명 정해진 일을 안하고 빠지지 않을까 라는 걱정이 들긴 했는데 다들 자기가 정해진 일에 최선을 다하고 완벽히 하게 되어 서로서로 너무 칭찬을 하고 싶습니다. 3조가 PBL Report를 하면서 제일 좋았던 일은 아무런 갈등없이 5개의 일을 나누는 것이었습니다. 1. 발표와 PBL Report 만들기 2. 문제 풀기(손으로) 3. 타이핑하기 4. Revise 하기 5. Finalize 하기 였는데 서로 하고 싶은 것이 있음에도 불구하고 서로서로 양보하여 각자의 일을 정확하게 나눌 수 있었습니다. 우리 팀 3조 너무 수고했고 박수를 쳐드리고 싶습니다.


2. SKKU Calculus

[동영상 강의]

1.1 History of Calculus  

How to manage our class Review

미적분학의 개념   


Chapter 1. Functions

문제풀이 by 곽주현

문제풀이 by 장찬영

문제풀이 by 임효정

Chapter 2. Limits and Continuity

2.1 Limits of functions

문제풀이 by 장재철-이훈정,

문제풀이 by 황인철

2.2 Continuity   

문제풀이 by 이훈정

Chapter 3. Theory of Differentiation

3.1 Definition of Derivatives, Differentiation

문제풀이 by 김태현

3.2 Derivatives of Polynomials, Exponential Functions, Trigonometric Functions, The product rule

문제풀이 by 조건우

3.3 The Chain Rule and Inverse Functions

문제풀이 by 유휘의

3.4 Approximation and Related Rates

문제풀이 by 김종민


Chapter 4. Applications of Differentiation

4.1 Extreme values of a function

문제풀이 by 김태영

4.2 The Shape of a Graph

문제풀이 by 김태영

4.3 The Limit of Indeterminate Forms and L’Hospital’s Rule 

문제풀이 by 신종희

4.4 Optimization Problems

문제풀이 by 이승철

4.5 Newton’s Method

문제풀이 by 이승철

Chapter 5. Integrals

5.1 Areas and Distances

문제풀이 by 남택현

5.2 The Definite Integral

문제풀이 by 남택현

5.3 The Fundamental Theorem of Calculus

문제풀이 by 정승찬 & Kim

5.4 Indefinite Integrals and the Net Change Theorem 

5.5 The Substitution Rule

문제풀이 by 이한울

5.6 The Logarithm Defined as an Integral

문제풀이 by 이한울

   미적분학 with Sage Midterm Exam

Chapter 6. Applications of Integration

6.1 Areas between Curves

6.2 Volumes

문제풀이 by 김종민

6.3 Volumes by Cylindrical Shells

문제풀이 by 신영찬      

6.4 Work

문제풀이 by 김건호

6.5 Average Value of a Function

문제풀이 by 신종희 

Chapter 7. Techniques of Integration

7.1 Integration by Parts

문제풀이 by 이인행

7.2 Trigonometric Integrals

문제풀이 by 김태현

7.3 Trigonometric Substitution

문제풀이 by 이훈정 

7.4 Integration of Rational Functions by the Method of Partial Fractions 

문제풀이 by 장재철

7.5 Guidelines for Integration

문제풀이 by 김대환

7.6 Integration Using Tables

문제풀이 by 조건우

7.7 Approximate Integration

7.8 Improper Integrals

문제풀이 by 이송섭

문제풀이 by 이인행 

Chapter 8. Further Applications of Integration

8.1 Arc Length

문제풀이 by 남택현

8.2 Area of a Surface of Revolution

문제풀이 by 정승찬

8.3 Applications of Integral Calculus

8.4 Differential equations

Chapter 9. Infinite Sequences and Infinite Series

9.1 Sequences and Series 

문제풀이 by 문지호

문제풀이 by 이원준  

9.2 Tests for convergence of series with positive terms 

문제풀이 by 김범윤

9.3 Alternating Series and Absolute Convergence

문제풀이 by 계성곤  

9.4 Power Series

문제풀이 by 배성준

9.5 Taylor, Maclaurin, and Binomial Series

문제풀이 by 우시명

Chapter 10. Parametric Equations and Polar Coordinates

10.1 Parametric Equations

문제풀이 by 문지호

문제풀이 by 임효정  

10.2 Calculus with Parametric Curves

문제풀이 by 장찬영

10.3 Polar Coordinates

문제풀이 by 계성곤

문제풀이 by 황인철

10.4 Areas and Lengths in Polar Coordinates 

문제풀이 by 곽주현

10.5 Conic Section 

문제풀이 by 변희성

문제풀이 by 이한울  


Chapter 11. Vectors and the Geometry of Space

11.1 Three-Dimensional Coordinate Systems

문제풀이 by 김태현

11.2 Vectors

문제풀이 by 오교혁

11.3 The Dot Product

11.4 The Vector or Cross Product

11.5 Equations of Lines and Planes

문제풀이 by 구본우

11.6 Cylinders and Quadric Surfaces  

Chapter 12. Vector Valued Functions

12.1 Vector-Valued Functions and Space Curves 

문제풀이 by 최양현

12.2 Calculus of Vector Functions

문제풀이 by 김동윤

12.3 Arc Length and Curvature

*12.4 Motion Along A Space Curve: Velocity and Acceleration  

Chapter 13. Partial Derivatives

13.1 Multivariate Functions

문제풀이 by 구본우

13.2 Limits and Continuity of Multivariate Functions

13.3 Partial Derivatives  

문제풀이 by 김동윤

13.4 Differentiability and Total Differentials

문제풀이 by 김범윤

13.5 The Chain Rule

문제풀이 by 김유경

13.6 Directional Derivatives and Gradient

문제풀이 by 김태현

13.7 Tangent Plane and Differentiability

문제풀이 by 서용태

13.8 Extrema of Multivariate Functions

문제풀이 by 오교혁

13.9 Lagrange Multiplier    

문제풀이 by 이원준

Chapter 14. Multiple Integrals

14.1 Double Integrals

문제풀이 by 이인행

14.2 Double Integrals in Polar Coordinates

문제풀이 by 이지석

14.3 Surface Area

14.4 Cylindrical Coordinates and Spherical Coordinates 

문제풀이 by 최양현

14.5 Triple Integrals

문제풀이 by 이인행 

14.6 Triple Integrals in Cylindrical and Spherical Coordinates 

14.7 Change of Variables in Multiple Integrals

Chapter 15. Vector Calculus

15.1 Vector Differentiation

문제풀이 by 김동윤

15.2 Line Integrals

문제풀이 by 김범윤

15.3 Independence of the Path

문제풀이 by 김유경

15.4 Green’s Theorem in Plane

문제풀이 by 서용태

15.5 Curl and Divergence

문제풀이 by 오교혁

15.6 Surface and Area

15.7 Surface Integrals

문제풀이 by 이원준

15.8 Stokes’ Theorem

15.9 Divergence Theorem

문제풀이 by 최주영


Part I  Single Variable Calculus

Part II  Multivariate Calculus 


3. Linear Algebra (English)

[Linear Algebra Syllabus (선형대수학 수업계획서)]  

Linear Algebra, First Class, Syllabus-Review 

(English Textbook)  

[Lectures Recorded] 

Linear Algebra Lecture Note (English)   

Linear Algebra Lecture Note (Korean) 

Linear Algebra Simulations:

Chapter 1. Vectors 

*1.1 Vectors in n-space and *1.2 Inner product and Orthogonality

1.3  Vector Equations of lines and planes

Chapter 2. Linear system of equations

2.1 Linear System of Equations,


2.2 Gaussian and Gauss-Jordan elimination,

2.2–2.3 Exercise

2.4  Exercises,

Chapter 3. Matrix and Matrix Algebra

3.1 Matrix operation

3.2 Inverse matrix

3.3 Elementary matrix

3.4 (part 1) Subspace

3.4 (part 2) Linear independence 

3.5 Solution set of a linear system and matrix

3.6 Special matrices and Sec 3.8  Exs/Sol

*3.7 LU-decomposition

  Student Review : Ch3-Ch2-Ch1

Chapter 4. Determinant

4.1 Definition and Properties of the Determinants

4.2 Cofactor Expansion/ Appl of Determinants

4.3 Cramer's Rule

*4.4 Application of Determinant

4.5 Eigenvalues/Eigenvectors & 4.6 Excercise 

Chapter 5. Matrix Model 

5.1 Lights out Game

5.2 Power Method

5.3 Linear Model (Google)


   - Ch 5 Matrix Model 학생 발표 

Chapter 6. Linear Transformations

6.1 Matrix as a Function (Transformation)

6.2 Geometric Meaning of LT (part 1)

    (part 2)  

6.3 Kernel and Range

6.4 Composition of LT and Invertibility  

*6.5 Computer Graphics with Sage

6.6 Exercises

Chapter 6. QnA Review  

  LA Midterm PBL 1 Presentation  

  LA PBL and Ch6 and Ch4 Student Review 

 Sample Midterm Exam

LA Midterm Exam

 LA Midterm Exam Sol

 LA Midterm Exam Sol  (image)

 2017 Spring LA Midterm Exam Review

Chapter 7. Dimension and Subspaces 

7.1 and 7.2 (Review)  Bases and dimensions, Basic spaces

7.3,7.4, 7.5, Rank-Nullity theorem, Rank theorem, Projection theorem 


*7.6 Least square solution

 Grade/QnA/ Review:  

7.7 Gram-Schmidt orthonormalization process

* 7.8 QR-Decomposition; Householder 

7.9 Coordinate vectors

Chapter 8. Diagonalization

8.1 Matrix Representation of LT

8.2 Similarity and Diagonalization

8.3 Diagonalization with orthogonal matrix  

8.4 Quadratic forms and Sec *8.5 Appl.  

8.6 SVD and Pseudo-Inverse   

8.7 Complex eigenvalues and eigenvectors

8.8 Hermitian, Unitary, Normal Matrices

*8.9 Linear system of differential equations

Chapter 9. General Vector Spaces 

9.1 Axioms of Vector Space,

9.2 Inner product spaces; *Fourier Series,

9.3 Isomorphism,

Chapter 10. Jordan Canonical Form

10.1 Finding the Jordan Canonical Form with a Dot Diagram

*10.2 Jordan Canonical Form and Generalized Eigenvectors,

10.3 Jordan Canonical Form and CAS,

 학생 문제 풀이, Chapter 10

4. Linear Algebra (Korean)

[선형대수학 Korean Lectures – 우리말 강의 (동영상)]

PBL - Flipped Learning  

Lecture 1 Introduction  


(디지털 교과서)

Chapter 1. Vectors 

1.1 벡터 and 1.2 내적  

1.3 벡터방정식  

Chapter 2. Linear system of equations

2.1 선형연립방정식 

2.2 Gauss-Jordan 소거법 

Chapter 3. Matrix and Matrix Algebra

3.1 행렬연산 

3.2, 3.3 역행렬과 기본행렬  

3.4 부분공간 

3.5 해공간  3.6 특수행렬  

Chapter 4. Determinant

4.1 행렬식 

4.2 여인자 전개와 역행렬 

4.3 크래머의 법칙 4.4. Appl, 4.5 고유값, 고유벡터 

Chapter 6. Linear Transformations

6.1 선형변환 

6.2 선형변환의 기하학적 의미 

6.3 핵과 치역

6.4 선형변한의 합성과 역행렬 

  LA Midterm Exam   

Chapter 7. Dimension and Subspaces 

7.1 기저와 차원 

7.2 주요 부분공간들 

7.3 Rank Nullity Theorem 

7.4 계수정리 

7.5 정사영정리 

7.6* 최소제곱해

7.7 Gram-Schmidt의 정규직교화과정  

7.8* QR-분해, Householder transformations

7.9 좌표벡터

Chapter 8. Diagonalization

8.1 선형변환의 행렬표현 


8.2 닮음과 행렬의 대각화 

8.3 직교대각화     

8.4 이차형식 

8.5* Appl of Quadratic Function  

8.6 Singular Value Decomposition 

8.7 and 8.8 복소고유값, 복소고유벡터, 정규행렬  

Chapter 9. General Vector Spaces 

9.1 and 9-2 일반벡터공간, 내적공간  

9.3 동형사상 

Chapter 10. Jordan Canonical Form

10.1 Jordan 표준형 

10.3  Jordan Canonical Form with Sage 

  (15 주차)  복습과 프로젝트 발표

 Math, Art and 3D Printing  

 PBL 보고서 by 김병찬 &우시명  

             by 손홍철  

             by  박민 

             by 전승준 

             by 김태용, 이학현, 이종화  

  (16주차) 기말고사 



5. Math History (수학사)

[강의 동영상]

<사회수학 : 400년의 파란만장 강의> 

6. Engineering Math with Sage (공학수학)

[무료 전자책] 

 (Sample Book1)  

 (Sample Book2)  


Chapter 00 서문 

Chapter 01 벡터와 선형대수 

Chapter 02 미분방정식의 이해 

Chapter 03 1계 상미분방정식 

Chapter 04 2계 상미분방정식 

Chapter 05 고계 상미분방정식 

Chapter 06 연립미분방정식, 비선형미분방정식 

Chapter 07 상미분방정식의 급수해법, 특수함수  

Chapter 08 라플라스 변환 

Chapter 09 벡터미분, 기울기, 발산, 회전 

Chapter 10 벡터적분, 적분정리 

Chapter 11 푸리에 급수, 적분 및 변환 

Chapter 12 편미분방정식 

Chapter 13 복소수와 복소함수, 복소미분 

Chapter 14 복소적분

Chapter 15 급수, 유수

Chapter 16 등각사상



7. Statistics (통계학)


[무료 전자책] 

최용석, [빅북총서008] R과 함께하는 통계학의 이해, BigBook, 2014. 

8. Linear Algebra and  Matrix Theory (행렬론)

[강의 동영상]  


[MT-Linear Algebra-Solutions]

All Solutions 

Chapter 1 Solutions:  

Chapter 2 Solutions: 

Chapter 3 Solutions: 

Chapter 4 Solutions: 

Chapter 5 Solutions: 

Chapter 6 Solutions: 

Chapter 7 Solutions: 

Chapter 8 Solutions 

Chapter 9 Solutions 

9. Linear Algebra and Matrix Analysis (행렬해석)

[강의 동영상]  

10. Numerical Linear Algebra (수치선형대수)

[강의 자료] 

11. Math Modeling (수학적 모델링)

[강의 동영상]  


12. Math for Big Data (빅데이터를 위한수학)

[강의 동영상 & 실습실]