Errata (2018. Spring) : Calculus

                     http://matrix.skku.ac.kr/Cal-Book/ 

  

    http://matrix.skku.ac.kr/cal-lab/Math-CAS.htm  

  http://matrix.skku.ac.kr/SKKU-Calculus-LAB/


CONTENTS


Part I   Single Variable Calculus

Part II  Multivariate Calculus


Main Author : Sang-Gu Lee

     Co-Authors : Eung-Ki Kim, Yoonmee Ham, Ajit Kumar, Robert Beezer, Quoc-Phong Vu, Lois Simon, Suk-Geun Hwang.

  

 Reviewers : Hyunsoo Kim, Jaedong Sim, Insung Hwang, Mohit Kumbhat, 

               L. Shapiro, R. Sakthivel, K. Das,  Victoria Lang

        

p. 6

                       

An example of a piecewise defined function is shown in the Figure 2.

The algebraic representation is given below.

     

             


p. 10, -1

  For example, the function is odd because

                          


p. 11, +1

7. Consider manipulating the code to see changes in the graph

  http://matrix.skku.ac.kr/cal-lab/cal-1-2-7.html

        


p. 26, -11

 

  If   , find the functions , , (and their domaions).


p. 51, +1

http://matrix.skku.ac.kr/cal-lab/cal-2-1-27.html

graph of #12 needs to replace

         Find . Let

  ⇒ If , then


.


p. 51, +10

    

                   



p. 51, -1

        29.

          http://matrix.skku.ac.kr/cal-lab.cal-2-1-28.html → Include

                                                      

                                                      


                                                      (sol)

                                                      Please Follow the proof in 28





Sec 2.2 


p. 53, +7

        In other words, is continuous at if approaches as approaches (see Figure 1.) Thus, a continuous function has the property that a small change in produces a small change in the corresponding value . Intuitively the graph of a continuous function has no break. So the graph can be drawn without raising the pen off the paper.


p. 53, -1

        Discontinuities fall into two categories: removable and non-removable. A discontinuity at is called removable if can be made continuous by defining (as in Figure 2(a)) or redefining at (as in Figure 2(c.)) The discontinuity in Figure 2(b) and Figure 2(d) is non-removable.


p. 54, Example Solution (b)

(b) At has a discontinuity because does not exist, although is defined.



p. 58, Theorem 6

        

p. 58, -14

(ⅰ) The value can be taken on once [as in Figure 4 part (a)] or more than once [as in part (b.)]

(ⅱ) The Intermediate Value Theorem is not true in general for discontinuous functions.

(ⅲ) The Intermediate Value Theorem is useful in locating roots of equations

    (see corollary below.)

p. 78, +3

        

p. 61 +4

        


 p. 61 -1

            


p. 62 +2

            


p. 62 +12

            


p. 63 -1 left

            


p. 63  +1 right

            


p. 63 -10 right

            



p. 63 -1 right

            


p. 64 +1 left

            


p. 64 +10 right

            



p. 64 -1 right

                            


            p. 65 +1 left


 


p. 65 + 3 right

            


p. 65 +5 right

            

제 3장 목차

            


   


p. 68  +15

            


p. 69  +10 add

            


p.70  +2 left

            


p. 70 문제 4 left

            

P1. 71 +1

            


p.71 +2

            


p.72  -7

            


p. 74 left

            

p. 75  -10

            


p. 75  -1

            

p. 76  -3

            


p. 77  +1

That is, the derivative of a quotient is the denominator times the derivative of the numerator minus the munerator times the derivative of the denominator, all divided by the square of the denominator.


p. 79  +9

            


p. 80 +11

            


p. 81  +1

            

p. 81 + 14

            

                p. 82 Figure 4 --> Figure 7


p. 82 - 1

            


p. 83  +1 right

                


p. 85 No15

                


p. 85 No19

            


p. 86  -8 left

            


p. 86 No25 Solution

            


p. 87  -7 ---> - 1

            


p. 88 -4

            


p. 89  +5

            

p. 89  +10

            


p. 91  -11

            

p. 92 + 2

            


p. 93  +8

            


p. 93  +17

            


p. 94  -15

            


p. 94 -1

            

p. 96 + 1

            

p. 96 -8

            

p. 100  -8

            


p. 100  -1


   


        


p. 101  +6

            


p. 107 +1

            



p. 109  -8 right

            

p. 134 cas 15.

            


P. 147

            


p. 147

            


p. 149 pro.26

               

p. 156  -1

        


p. 163  -5 right

       


p. 179   +6


p. 188   +1 left

       



p. 188  +2 right ---> link add

    



p.    188  -9 right ---> link add

    


p. 191 +3 right

    



Chapter 6


    

    


p.     238  +1 right

    


p. 238  +7 right

    


p. 239  -11 left

    


p. 239  +4 right

    


p. 239  +14 right

    


p. 246  -1

Figure6 ---> Figure7

    


p. 249 add Figure No.

    


p. 249 Figure

    


p. 251  -4 right

    


p. 252  -12 left

    

p. 252  -10 left

    


p. 252  -6 left

    


p. 252  -1 right

    

p. 254  +2 left

    


p. 254  -15 right

    


p. 255  +5 left

    

    


   

p. 267  +7 left

    


p. 267  +9 left

    



Chapter 7

    

    

    



p. 339 Web

    


p. 342 Web

    


p. 344 Web

    


p. 365 Web

    

 

Chapter 8

Applications of integrals to areas, volumes, work done and the average value have been considered in the previous chapters. In this chapter, we consider more applications of integrals to the length of curves, the surface area of a surface of revolution, and center of mass. We also describe applications of integrals to simple differential equations.



p. 372 Figure 2

    



p. 384  -2

    


p. 385  -8

    


p. 393  +1

    


p. 393  +8

    


p. 393  -5

    


P. 397  + 15

    


p. 399  + 4

      

 

Chapter 9

 

    Chapter 9 Web add

    


p. 409  +1

    


p. 423  Web

    

    


p. 425  -1 left

    Hence, this sequence is convergent.



p. 427 Web add

    


p. 434 Web add

    


p. 434  -1 right

    


p. 435  +2 left

    


p. 437 Web add

    


p. 437  +2

  In  this section we will focus on tests for convergence for series with terms that are


p. 427  +15

 


p. 27  -1

    


p. 443  -12

    



p. 444 Web add

    


p. 444  + 3 left

    


p. 444  +7 left

    


p. 444  -2 left

    


p. 444  +1 right

    

 

p. 444  +10 right

    


p. 444  -6 right

    Thus, by the Alternating Series Test, for , this series is convergent.


p. 447  -6

    


p. 453 Web add

    


p. 453  -1 left

    


p. 453  +17 right

    Thus, the given power series converges for

    So, and


p. 454  +14 left

    


p. 454  +17 left

    interval of convergence is .


p. 454  +7 right

    


p. 456 Web add

    


p. 457  +1

    


p. 468  +10

    


p. 471 Web add

    


 p. 474  -1 add

    

p. 475

    




             Part 2

Chapter 10

 

    

    


p. 479  +15

    


p. 479  -10

    


p. 484 Web add

    


p. 486  +5 right

    


p. 486 +6 right

    


p. 487  -7 left

    


p. 489  Web add

    


p. 495 Web add

    


p. 501 Web add

    


p. 505  -8

    following three rules will be useful in sketching polar curves.


p. 507  +13

    


p. 508  +5

    


p. 510 Web add

    


p. 515 Web add

    


p. 517 Figure 7

    



p. 519 Figure 8

    



p. 522 Web add

    

    


p. 526  -6 right Figure

    


 

p. 528 Web add

    


p. 528  -12

    

p. 542  Web add

    

 

Chapter 11


In this chapter, we introduce vectors and coordinate systems for three-dimensional space. We also deal with various conepts in vectors, such as the dot and the cross product of vectors, vector equations of lines and planes in space. We will also discuss standard quadric surfaces.


p. 550  +15

    


p. 553 Web add

    


p. 553  +14 right

    


p. 544  -11 left

    


p. 544  -8 left

    


p. 544  -7 left

    


p. 544  +11  right

    


p. 544  +19  right

    


p. 544  -6  right

    



p. 556 Figure 4

    


p. 558  -10 Figure 5

    

p. 558  -8

    


p. 560 -4

    

p. 562 Web add

    


p. 570  +8

    

      is orthogonal to the vector a.


p. 572 Web add

    


p. 572  + 15 left

    


p. 572  -14 left

    


p. 572  -12 left

    


p. 572  -5 left

    


p. 573  +2 right

    


p. 573  +16 right

    


p. 573  -17 right

    


p. 574  -3 left

    


p. 580  +10

    


p. 581 +3

    


p. 582 Web add

    


p. 582  +3 left

    


p. 582  +15 left

    


p. 582  -10 left

    

p. 582  -8 left

    


p. 582  -6 left

    

p. 583  +12 right

    

     and , so a


p. 583  +16 right

    That is, is orthogonal to the plane


p. 584  -14 right

    


p. 584  -1 right

    , then find .


p. 585  +4

    In the plane , the equation of a line can be uniquely determined when a


p. 585  +9

 

  

    where , and are real numbers and and are not both zero.

     Let’s find the equation of a line in . If a line passes through the poin


p. 585 -1

    of the line. Thus we have vectors


p. 587  + 17

    


p. 589 -8

    


p. 590  +6

    


p. 599 Web add

    


p. 603  +13

    


p. 605  +13

 

    .

    This is an ellipsoid.


p. 606  +2

 

        .

         This is an elliptic paraboloid.


p. 606 Figure 5

        


p. 606  +8

        


p. 610  Figure 10

        


p. 611 Web add

        


p. 614  +4 right

        


Chapter 12

        

 

        


p. 618  +9

        


p. 618  -4

        

p. 620   +2

        A vector function is said to be continuous at if

        (ⅰ) is defined

        (ⅱ) exists

        (ⅲ) .


p. 623  left

        Many surfaces are obtained by revolving a plane curve about various axes. For example if the upper semi-circle with and is rotated about the x-axis, we get the sphere. We can easily write a parametrization of such surfaces. If we take a curve on an interval . Then we think of this as a curve in xz=plane.



p. 624  Web add

        


p. 626  -10  right

        


p. 627  +8  right

        

p. 627  +16  right

        


p. 627  -10  right

        


p. 628  -6

        


p. 634  +7

        


p. 636 Web add

        


p. 636  +6  left

        


p. 636  -9  left

        

p. 636  +9  right

        

p. 637  +8  left

        

p. 637  -3  left

        

p. 638  +3  right

        


p. 639  +4  left

        

p. 644  +2

        


p. 661  +1

        

p. 671

        Torus and ICME 11 Logo

   

 

 Chapter 13

            


p. 676  +3

        Graph of a Multivariate Function


p. 681  +1

        Functions of Three Variables


p. 683  Web add

        


p. 684  -3

        


p. 697  Web add

        

p. 705  -2

        


p. 706  Web add

        


p. 706  -2  right

        


p. 713  Web add

        


p. 714  Web add

        


p. 714  +7

        derivative and partial derivatives of compositions of functions. Let us consider


p. 721  +13

        

p. 725  Web add

        

        


   

p. 728  +3

        


p. 732

The Gradient and Level Curves

Note that Observation 3 says that in the direction orthogonal to the gradient


p. 735

Suppose has continuous first order partial derivatives.

Then the surface


           

        is one of the level surfaces of . Let


p.737  Left Figure


p. 739  Web add

        



p. 741  +4

        


p. 746  Web add

        


p. 748  +12  right

        

p. 766  Web add

        


p. 766  -1  left

        


p. 782  Web add

        


위치 확인


        


Chapter 14

In this chapter, we extend the definition of definite integral for a single variable function to double and triple integrals of function of two or three variables. We apply the definition of double and triple integrals to compute areas and volumes of plane and solid regions. We introduce the polar coordinate system in plane, which helps us to deal with some special types of regions. In a similar way, we introduce cylinder and spherical coordinate systems in space. This chapter also deals with the change of variable formula, which helps us to transform an integral from on coordinate system to another coordinate system.


p. 786  -7

        


p. 787  -8

        



p. 789  -10

        

p. 791  -1

        

p. 794  -7


        


p. 795  -11

            


p. 799  -2

        Recall that the area of ellipse is .


p. 800  +4

        We have already seen an application of double integrals to special types of


p. 803  Web add

        


p. 805

            

p. 811  Web add

            

p. 813  -2

            


p. 814  -1

         in 1st octant. (See Figure 3.)


p. 815  +5

        Find the surface area for the part that was cut by the palne on cylinder in 1st octant.


p. 823  +15

        


p. 825  -1

        


p. 826  Web add

        


p. 832  +9

        


p. 833  Web add

        


p. 834  +8 right

        

p. 842   Web add

        


p. 842  +11

        


p. 842  -8

        

p. 845  +9

        ,

p. 845  +13

              


p. 846  +1

        

        

    .

        

  

 

  Chapter 15


        


p. 854  Web add

        


P. 845  Web add

        


p. 865  +2

        


p. 865  +13

            


p. 867  +4

        partial derivatives and Then is conservative.

 

p. 867  +9

        Theorem 2 and 3.

 

p. 869  +3

        

 

p. 869  +12

        

p. 870  -14

        

p. 873  -5

        


p. 876  +4

        curve, (see Figure 1.) that is possible to transforms line integrals to double integrals and vice versa.


p. 877  Figure 3

        


p. 891  -3

        

p. 892  +12

        

p. 893  +2

 

        endency of the vector field to rotate or to diverge where is the velcoity of fluid (or gas) in physics applications. We can understand the terms in the following discussion, by calculating curl and divergence of vector fields. If at a point , then is called bold at . If div , then is said to be bold


p. 897  Web add

        


p. 900  Figure 1

        


p. 904  +10

        



p. 907  Web add

        


p. 910  -5

with the unit normal .

When is represented in parametric form as with the two parameters and varying in a region of -plane, then the unit normal to at is given by


p. 912  +3

Find the flux of the vector field across the sphere .

        


p. 913  +6

        


p. 913  -8

        


p. 913  -5

        


p. 913  -2

        

p. 914  +5

        

p. 915  Web add

        

p. 923  Web add

        


p. 931  Web add

        


p. 937  +15  left

        exponential function.

The number is called the base and is called the exponent

http://matrix.skku.ac.kr/Mobile-Sage-G/sage-grapher.html


2. Logarithmic Functions

The logarithmic Function with base and , is defined by .


p. 937  +2  right

In)         


p. 937  +6  right

In       


p. 938  +1  left

6. Sum-to-Product


p. 939  -12  left

          


p. 941  +9  left

        

Let two nonzero vectors and be two sides of a parallelogram, then the area of the parallelogram is .

http://matrix.skku.ac.kr/cal-lab/cal-11-4-10.html


p. 941  +14  left

        


p. 941  -1  left

        


p. 941  -7  right

7. Integral of a Vector Function

If ,

   then



p. 941  +14  right


 ,


p. 941  +17  right

        


p. 941  -16  right


   : symmetric equation


p. 941  -1  right

        


Index part skipped


                  The End  ■