Calculus-Sec-10-2-Solution


10.2    Calculus with Parametric Curves           by SGLee - HSKim - JHLee

                                                                                                             http://youtu.be/yF5oZOQVnCE

1-2. Find .

 

1. 

 

    .




2. 

 

   .




3-6. Find an equation of the tangent to the curve at the point.

 

3.  

 

 

       .  

       At the point with parameter value , the slope is .

       Slope of the tangent at  is . Hence, the equation of the tangent line is .   <-- y=-2+3/5(x+2)=3/5x-4/5

       http://matrix.skku.ac.kr/cal-lab/cal-9-2-3.html 







4. 

 

 

     At the point with parameter value , the slope is .    <-- 역수로 고쳐야 함

     Slope of the tangent at  is .

     Hence, the equation of the tangent line is .      <-- y=sqrt(3)/2 x - 1/2







5. 

 

 

      At the point with parameter value , the slope is .

      The point (1,1) corresponds to the parameter value ,

      so the slope of the tangent at the point is .

      Hence, the equation of the tangent line is .







 6. 

            http://matrix.skku.ac.kr/cal-lab/cal-9-2-6.html

 

       At the point with parameter , the slope is .

       If . It’s slope of the tangent at  is .

       Hence, the equation of the tangent line is .







7-10. Find . For what values of  is the curve concave upward or downward?

 

 7. 

            http://matrix.skku.ac.kr/cal-lab/cal-9-2-7.html


       ,

       .

        ⇒ Since ,   for all .

        Hence, the curve is downward everywhere.







8. 

 

      ,

      .

           ⇒ If ,  . Thus if ,  .

           Hence, the curve is concave upward on ,

           and is concave downward on .







 9. 

              http://matrix.skku.ac.kr/cal-lab/cal-9-2-9.html 


  

      .

      

       If ,  . Thus if ,  .

       Hence, the curve is upward on , and the  curve is downward on .

       Note that this curve is an ellipse.







10. 




11-12. Find the point on the curve where the tangent is horizontal or vertical.

 

11. 

     http://matrix.skku.ac.kr/cal-lab/cal-9-2-11.html  

 

 

      so 

       so 

      The curve has horizontal tangents at ,

      and vertical tangents at .




12. 

 

 

      , so  for .

      Points at which the tangent is horizontal and  ,

      so  for .

      The curve has horizontal tangents at ,

       and vertical tangents at .




13. Show that the curve  has two tangents at (0, 0) and find their equations.

 

 

     .

      Now  is 0 when , so there are two tangents at the points (0,0)

     since both  correspond to the origin.

     The tangent corresponding to  has slope 2, and  its equation is .

     The tangent corresponding to  has slope -2, and its equation is .




14. At what point does the curve  cross itself?

             Find the equations of both tangents at that point.

             http://matrix.skku.ac.kr/cal-lab/cal-9-2-14.html 

 

 

       From the figure it is clear that at (0, 0) the curve does cross itself.

       Moreover,  is 0 when .

       The tangent corresponding to t has slope 1 or -1.

       Then the equations of tangents at (0,0) are .




15. At what points on the curve  is the tangent parallel to the line with equations ?

 

 

      Given latter function’s slope is ,

      so we should find  when the former function’s slope is .

      . We can get  is  or .

      When  is  or , the former function’s tangent parallel to the latter’s.

                                                   

      http://matrix.skku.ac.kr/cal-lab/cal-9-2-15.html 







16. Find the area bounded by the curve  and the line .

 

       When  or .




     When , x=-3/2. When , x=3/2 .

      ∵




 17. Find the area bounded by the curve , and the lines  and .

             http://matrix.skku.ac.kr/cal-lab/cal-9-2-17.html 

 

 

      The curve  intersects the -axis when .

      Then, the corresponding values of  are .







18. Find the area of a region enclosed by the astroid .

             http://matrix.skku.ac.kr/cal-lab/cal-9-2-18.html

 

 

        ∴()







19. Find the arc length of the curve defined by

            .

 

 

    . Then, .

     Hence, .

     http://matrix.skku.ac.kr/cal-lab/sage-grapher-para.html




20. Find the arc length of the curve defined by

        .

 

 

     , 

      

     =sqrt(2)*e^pi - sqrt(2)













 21. Find the arc length of the curve defined by

                   .

             http://matrix.skku.ac.kr/cal-lab/cal-9-2-21.html 

 

 













 22. Find the arc length of the curve defined by

                  .

              http://matrix.skku.ac.kr/cal-lab/cal-9-2-22.html 

 

 







23. Find the length of one arch of the cycloid .

 

     . Then, .

       Hence, .




24-26. Find the area of the surface obtained by rotating the given curve about the -axis.

 

24.  : 

 

 

     . Then, .

      Hence, .




25.  : 

 

     . Then, .

      Hence,

      

         .




26.  ; 




27-29. Find the area of the surface generated by rotating the given curve about -axis.

 

27.  ; 

     http://matrix.skku.ac.kr/cal-lab/cal-9-2-27.html 

 

      ,  

       = 2/1215*(247*sqrt(13) + 64)*pi

                                      




28.  ; 




29.  ; 




      

 

                                                         Back to Part I