Calculus-Sec-4-3-Solution


 4.3   The Limit of Indeterminate Forms and L’Hospital’s Rule

                                                           by SGLee - HSKim -JHLee

                                                                                                             http://youtu.be/gR2luDDPsMY

1-11. Evaluate the limits of the given indeterminate forms.

 

1. 

 

      Apply L'Hospital Rule twice.







2. 

 

      







3. 

 

 

     By L'Hospital Rule, .







4. 

 

 

       




5. 

 

 

    Let .  Note  and 

 

    . By L`Hospital’s Rule,

     ()

      .




 6. 

http://matrix.skku.ac.kr/cal-lab/cal-4-3-6.html 








7. 

 

   

       1




8. 

 

 

     By L'Hospital’s Rule

      .







9. 

 

 

      




 10. 

http://matrix.skku.ac.kr/cal-lab/cal-4-3-10.html 

 

 

    .




11. 

 

     .




12. Let . Use L'Hospital's Theorem to show that .     <-- x가 +infinity로 가야 함 (수정 필요)

 

 

    

                  , since  is constant and the denominator grows without bound.




13. For what values of  and  is the following equation correct?

                        

 

 

      

      

      By L'Hospital’s Rule for a form of type 

      

      

      and we may take  to be any value.




14. 

   http://matrix.skku.ac.kr/cal-lab/cal-4-3-14.html

 

     by L'Hospital Rule for a form of type 




15. 

 

     . Note 
     Therefore, by L’Hospital’s Rule,

     

                           .




16-17. Find the following limit.

 

16. 

 

 

     (by L'Hospital’s Rule)  or  .




17. 

 

      (by L'Hospital’s Theorem)

      or  .




18-27. Find the limit by using L'Hospital's rule. If you cannot apply L'Hospital's rule, explain why and then find the limit by another method.

 

18. 

 

 

      , limit does not exists.




19. 

http://matrix.skku.ac.kr/cal-lab/cal-4-3-19.html 

 

 

    (by L`Hospital`s Rule)  .




20. 

 

 

      Apply L'Hospital's rule, 




 21. 

http://matrix.skku.ac.kr/cal-lab/cal-4-3-21.html 

 

     




22. 

 

     




23. 

 

 

       




24. 

 

       does not exist.




25. 

 

 

        







 26. 

http://matrix.skku.ac.kr/cal-lab/cal-4-3-26.html

 

 




27. 

 

       




28. The function  is defined by

  and  .

    Answer the following questions.

    (a) Find .

    (b) Does  exist?

 

      (a) 

      (b) 

           does not exist.




29. Let  be a continuous function with  and . Find .

 

        and . Hence, by L'Hospital’s Theorem

        .




30. Let  be the angle of a sector of a circle. Find  where  and  are

      the area of the segment shaded region between the chord  and arc, the area of the triangle  respectively.


 

      ,

      

           

       .                                                 

                                                        




                                  

 

                                                             Back to Part I