Calculus-Sec-5-3-Solution


 

 5.3   The Fundamental Theorem of Calculus    by SGLee - HSKim- SWSun

                                                                                                            http://youtu.be/Pa4Z38KkDVY

1. Let , where  is the function whose graph is shown below.

   (a)Evaluate  and .

   (b)Estimate  and .

   (c) On what interval is  increasing?

   (d) Where does  have a maximum value?

   (e) Sketch a rough graph of .

   (f) Use the graph in part to sketch the graph of . Compare with the graph of .

  (a).

  (b) .

  (c) .

  (d) .

  (e) ( is blue,  is red)

  (f) .
                                       




2-3. Draw the area represented by . Then find  in two ways:

     (a)by using Part 1 of the FTC and

     (b)by evaluating the integral using Part 2 and then differentiating.

 

2. 

 

       (a)  .

       (b) .




 3. 

 

      (a) .

      (b) .




4-7. Find the derivative of the function using part 1 of the FTC.

 

4. 

 

      .




5. .  [Hint: ]

 

      .




 6. 

 

     .




7. 

 

     .




8-10. Evaluate the integral using Part 2 of the FTC.

 

8. 

 

     

     =  = (64 + 32 + 8) - (0 + 0 + 0)   =  = 104.




 9. 

 

     

     




10. 

 

 

    .




11. Let . Use Part 1 of the FTC to find .

 

 

     so .




12. Give a non-polynomial function  () such that  and .

 

 

      For any function  set .

      Then clearly  and  so 

      For example .




13. Let  and . Find .

 

 

       and 

      Hence , so .




14. Let  defined on . Find .

 

      . So . Note that .

      and  for . Hence  should be .

      Therefore .




15. Let .  Find.

 

 

     Differentiate both sides to get  .

      .

      Hence,

      .




16-17. Evaluate the integral and interpret it as a difference of areas.

 

16. 

 

 

     =  since  = 0.

                              




 17. 

 

 

    .

                              




18. If , where , find .

 

      

      

      Therefore, .




 19. Find the value of  if  is continuous, and .

 

     .




20. If  is continuous and  and  are differentiable functions, find a formula for .

 

       

                              




                                          Back to Part I