Calculus-Sec-5-6-Solution


    5.6   The Logarithm Defined as an Integral     

                                                                 by SGLee - HSKim- SWSun

                                                                                                             http://youtu.be/ymDImdIQ90c

 

 1. (a) By comparing areas, show that .

            (b) Use the Midpoint Rule with  to estimate .

  http://matrix.skku.ac.kr/cal-lab/cal-RiemannSum.html

     (a)  From above figure, we have

          .

         Since ,   and ,

         we have .

                                        

     (b) Let . Then we get

          

                  




2. By comparing areas, show that

                      .

 

 

    Note that . Let 

    If we use the left endpoint rule with  subintervals to estimate , then the th height is .

    If we use the right endpoint rule with  subinterval to estimate , the th  height is .

    Since  for both rules is 1 and , we obtain the desired expressions.




3. (a) By comparing areas, show that .

    (b) Deduce that .

 

 

    (a) By similar approach as Example 1,

           and

          

          Hence 

                                  

       (b) Since  is an increasing function and ,

            we have .

           Therefore  




4. Deduce the following laws of logarithms.

   (a) 

   (b) 

   (c) 

 

      Let  and .

      Then  and .

      (a)

          

      (b) 

          

      (c) 

          




5. Show that  by using an integral.

 

 

     

      => .




6. Evaluate

            

 

     

      

      .




 7. Evaluate .

 

      Let . Then

      .

      

      Hence we have .




8. Evaluate 

                 .

 

 

     The above limit can be written as a definite integral, namely .

     To evaluate the integral, we first use the substitution . Then

      

      The last integral above is computed as follows:

      

                       

                       

      Hence

      




9. Find 

          .

 

     We know that

       as  and  as 

      while the second factor approaches

      , which is 0.

      The integral  has  as its upper limit of integration(Part 1 the FTC) suggesting that differentiation might be involved.

      Then the denominator  reminds us the definition of the derivative with .

      So this becomes .

        Thus define  then . Now

      

                                         

                                         

                                            (By the FTC 1)

                                           

Note  Alternatively you may use L’Hospital’s Rule.




                                                                   

        

 

                                                              Back to Part I