Calculus-Sec-9-4-Solution


  9.4   Power Series                                   by SGLee - HSKim -JHLee

 

1-10. Determine the radius of convergence  and interval of convergence  of the following series.

 

1. 

 

 

      as .

      Using the Ratio Test, the given series is absolutely convergent

      and therefore convergent when , and divergent when .

      If , then the series becomes , which is divergent.

      If , then the series becomes , which converges by the Alternating Series Test.

      Thus, the given power series converges for . So,  and .




2. 

 

 

       as 

      Using the Ratio Test, the given series is absolutely convergent

      and therefore convergent when , and divergent when .

      If , then the series becomes , which converges by the Integral Test.

      If , then the series becomes , which converges by the Alternating Series Test.

      Thus, the given power series converges for . Hence,  and .




 3. 

            http://matrix.skku.ac.kr/cal-lab/cal-10-4-3.html 

 




4. 

 

 

       as .

      Using the Ratio Test, the given series is absolutely convergent

      and therefore convergent when , and divergent when .

      If , then the series becomes , which is divergent.

      If , then the series becomes , which is not convergent.

      Thus, the given power series converges for . So,  and .




5. 

 

 

      as .

      Using the Ratio Test, the given series is absolutely convergent

      and therefore convergent when , and divergent when .

      If , then the series becomes , which converges by the Alternating Series Test.

      If , then the series becomes  the negative series, which is divergent.

      Thus, the given power series converges for . So,  and .




6. 

 

 

       as .

      Using the Ratio Test, the given series is absolutely convergent

      and therefore convergent when , and divergent when .

      If , then the series becomes . Since , by the Comparison test,

       is  convergent.

      If , then the series becomes ,  which converges by the Alternating Sereis Test.

      Thus, the given power series converges for . So,  and .




7. 

 

 

       By the Root test,

        for all .

      Thus, the radius of convergence is  and the interval of convergence is .




 8. 

            http://matrix.skku.ac.kr/cal-lab/cal-10-4-8.html

 




9. 

 

      as .

      Using the Ratio Test, the given series is absolutely convergent

      and therefore convergent when , and divergent    when .

      If , then the series becomes .

      Since ,

      by the Comparison test,  is divergent.

      If , then the series becomes .

      Since .

      Thus, the given power series converges for .

      So,  and .




10. 

 

       as .

      Then, the given power series converges for .

      So,  and .




11-13. Determine the interval of convergence of a power series representation for the function .

 

11. 

 

      

      Since this is a geometric series, it converges when , that is .

      Therefore, the interval of convergence is .




12. 

 

 

      

       Since this is a geometric series, it converges when .

       Therefore, the interval of convergence is .




13. 

 

 

      .

      Since this is a geometric series, it converges when .

      Therefore, the interval of convergence is .




14. Express the function as the sum of a power series by first using partial fractions.

     Find the interval of convergence :  .

 

       

      Since this is a geometric series, it converges when  and , respectively.

      Therefore, the interval of convergence is .










15-16. Find a power series representation for the function and determine the radius of convergence.

 

15. 

 

      The derivative of  is . We have

       for .

      Thus,

      

      We put  in this equation to determine the value of . That is,  or . Thus,

      

      Here  since the radius of convergence is the same as for the original series.







16. 

 

 

      The derivative of  is . Now, we have

      , for .

      Thus,

      

      We put  in this equation to determine the value of . Then,  or . Thus,

      

      Here  since the radius of convergence is the same as for the original series.







17. (a) Find a power series representation for . What is the radius of convergence?

      (b) Use part (a) to find a power series for .

 

 

      (a) By Example 8 in Section 9.2,

                 .

      (b) .

           The power series for  is .

           By part (a),

                 .

           Thus,

                 




18-19. Evaluate the indefinite integral as a power series and find the radius of convergence.

 

18. 

 

              .

      Thus, the power series is

            .

      The above power series converges when .

      Therefore, the interval of convergence is .




19. 

 

       Since 

            .

      Hence,

           .

      Therefore,

          .




                        

                                                      Tiling

 


                                        Back to Part I