Calculus-Sec-9-5-Solution


  9.5   Taylor, Maclaurin, and Binomial Series     by SGLee - HSKim - JHLee

 

1-5. Determine the radius of convergence of the Maclaurin series expansion for , where

 

1. 

 

      ,

      ,

      ,

      ,

      ,

                                

      

      .

      Therefore, the function’s Maclaurin series is

      .

      Here , then   as .

      Hence, by the Ratio Test, the series converges for all , and the radius of convergence is .







2. 

 

        for all . Therefore, Maclaurin series is

      .

      Let , then  as .

      Hence by the Ratio Test, the series converges for all , and the radius of convergence is .










3. 

 

      ,

      ,

      ,

      ,

      ,

                                              

      .

      Therefore, its Maclaurin series is

      .

      Here , then  as .

      Hence by the Ratio Test, the series converge when .




4. 

 

      

      

      

                      

      

      .

      Therefore, its Maclaurin series is

      .

      Let , then  as .

      Hence by the Ratio Test, the series converges for all , and the radius of convergence is .










6-9. Obtain the Taylor series for  about , where

 

6. 

 

    .




7. 

 

      

      

         

     




 8. 

            http://matrix.skku.ac.kr/cal-lab/cal-10-5-7.html 

 

 




 9. 

            http://matrix.skku.ac.kr/cal-lab/cal-10-5-8.html 

 

 




10-12. Find the Maclaurin series for the given function.

 

10.  (Use )

 

      

      

      

      

                            

      .

      

      Thus .







 11. 

             http://matrix.skku.ac.kr/cal-lab/cal-10-5-10.html 

 

 




 12. 

             http://matrix.skku.ac.kr/cal-lab/cal-10-5-11.html 

 

 




13-14. Evaluate the indefinite integral as an infinite series

 

13. 

 

      

      

      Integrate both sides term by term:

      




 14. 

              http://matrix.skku.ac.kr/cal-lab/cal-10-5-13.html 

 

 




     Thus 

      Integrate both sides term by term:

      .

15-16. Evaluate the limit using a series:

 

 15. 

              http://matrix.skku.ac.kr/cal-lab/cal-10-5-14.html 

 

 

      Ans: 




16. 

 

      .

       .

       .







17. Deduce from the Maclaurin series for  that .

 

 

      Since  ,

      .

       Put , then .




18-21. Obtain the binomial series and radius of convergence of the function.

 

18. 

 

 

        

                                         

       this series converges when , so the radius of convergence is .




19. 

 

       

       this series converges when . so the radius of convergence is .




20. 

 

      

      this series converges when , so the radius of convergence is .




21. 

 

       

       this series converges when , so the radius of convergence is .




22. Evaluate  using the binomial series where .

 

 

       Since  ,

      .

      Thus ,

      

Mathematicians Playing Cards:

                  

                      http://matrix.skku.ac.kr/2009-Album/2009-Math-Poster2/2009-Math-Poster2.html 

 

                                                Back to Part I