Calculus-Sec-11-1-Solution


  11.1     Three-Dimensional Coordinate Systems     by SGLee-HSKim -JHLee

                                                                                                                                          http://youtu.be/_s_2T1VVob8 

 

 1. Draw the surface  in .

           http://matrix.skku.ac.kr/cal-lab/cal-11-1-1-a.html

 

 

     (You may do it with Sage in http://math1.skku.ac.kr/

      Refer open resources in http://math1.skku.ac.kr/pub/ )




 2. Draw the surface  in .

           http://matrix.skku.ac.kr/cal-lab/cal-11-1-2.html 

 

 




 3. Find the lengths of the sides of the triangle with vertices  and  .

           Is  a right triangle? Is it an isosceles triangle?

           http://matrix.skku.ac.kr/cal-lab/cal-11-1-3.html 

 

      Isosceles triangle because AB=BC.




 4. Find the distance from  to each of the following.

           (a) The -axis     (b) The -axis     (c) The -axis

           (d) The -plane   (e) The -plane   (f) The -plane

           http://matrix.skku.ac.kr/cal-lab/cal-11-1-4.html 

 

 




5. Find an equation of the sphere with center  and radius 3.

    What is the intersection of this sphere with the -plane?

 

 

     An equation of the sphere : ,

     and the intersection of this sphere with the -plane can be obtained by substituting  in the equation.

     Hence .

 




6. Find an equation of the sphere that passes through the point  and has center .

 

 

     The distance between  and  is the radius of the sphere.

      Hence, .

      Thus, an equation of sphere is .

 




7-8. Show that the equation represents a sphere, and find its center and radius.

 

7. 

 

 

      

       . Hence

          center: , radius: .

 




8. 

 

 

         Completing squares in the equation gives :

         

       

       , with the center  and radius .

 




9. (a) Prove that the midpoint of the line segment from

           to  is .

    (b) Find the lengths of the medians of the triangle with vertices  and .




10-16. Determine the region of  represented by the equation or inequality.

 

10. 

 

     The equation  represents a plane parallel to the -plane and 8 units in front of it.




11. 




12. 

 

 

    The inequality  represents all points on or between the horizontal planes  (the -plane) and .

    So the answer is all points on or between the horizontal plane  (the -plane) and .

 




 13. 

            http://matrix.skku.ac.kr/cal-lab/cal-11-1-13.html 

 

 




14. 

 

     The set of all points in  whose distance from the -axis is .

     This is a cylinder of radius 3 and axis along -axis.

 




15. 

 

 

     The inequality  is equivalent to .

     So the region consists of those points whose distance from the point  is greater than 1.

     This is the set of all points outside the sphere with radius 1 and center .

 




 16. 

            http://matrix.skku.ac.kr/cal-lab/cal-11-1-16.html 

 




17-18. Describe the given region by an inequality.

 

17. The half-space consisting of all points to the left of the -plane.

 

     This describes all points with positive -coordinates, that is, .

 




 18. The solid rectangular box in the first octant bounded by the planes , and .

             http://matrix.skku.ac.kr/cal-lab/cal-11-1-18.html 

 

 







                                    

 

                                               Back to Part II