13.2


 13.2    Limits and Continuity of Multivariable Functions

                                    by SGLee - HSKim, VLang, KHKim

 

1-7. Find the limit, if it exists, or show that the limit does not exist.

1. 

<Solution from Cal-Book>

Let  and  along the line . So the limit of   does not exist. For example, for  and for .       

 

<Detailed Solution>

 

Let , so that  when .  Therefore the limit,

 

.

The limit does not depend on  or ; thus, there is no limit. 

 










2. .

 http://matrix.skku.ac.kr/cal-lab/cal-12-1-1.html

 

<Solution from Cal-Book>

 As   and  .

 

The limit exists, and it is .

 

<Detailed Solution>

 

Let  and , so that  when . Therefore the limit,

 

 

 

The limit does exist, and it is 0.




3. 

http://matrix.skku.ac.kr/cal-lab/cal-12-1-Exs3.html

 

<Cal-Book Solution>

 

Answer: The limit does not exist.

 

<Detailed Solution>

 

Let , so that  when .  Therefore the limit,

 

The limit does not depend on  or , thus, there is no limit.










4.  .

  http://matrix.skku.ac.kr/cal-lab/cal-12-1-3.html

 

<Cal-Book Solution>

 

After plotting the function, we know it converges. So the order of  and  does not matter.

 

<Detailed Solution>

 







5. 

    http://matrix.skku.ac.kr/cal-lab/cal-12-1-4.html

 

 

      Let  and  along the line .




The limit does not exist.

6.  

 

      After plotting the function, we know it converges.

      Let  and  along the line .

      Answer : 0 

7. 

    http://matrix.skku.ac.kr/cal-lab/cal-12-1-6.html

 

 




So .




The limit exists, and it is .

8. What value of  for   will make the function continuous at .

 

      => 

     Since  , then  by Squeeze Theorem.

     Hence, if we define  will be continuous at .

 

9-10. Let each of the following functions have the value 0 at the origin.

        Which of them are continuous at the origin? Explain your answer.

 

9. 

    http://matrix.skku.ac.kr/cal-lab/cal-12-1-7.html

 

 







The limit exists and it is .

So  is continuous at the origin.

  10. 

              http://matrix.skku.ac.kr/cal-lab/cal-12-1-9.html

 

 




The limit does not exist.


11-12. Find  and the set on which  is continuous.

 

11. 

 

 

      Since  is continuous for all  and  is continuous for all 

       is continuous on a set  by using Theorem 5 in Section 13.2.

12. 

 

 

      Since  is continuous for all  and  is continuous for all 

       is continuous on a set  by using Theorem 5 in Section 13.2.

                

 

                                                                    Back to Part II