Calculus-Sec-14-6-Solution


   14.6   Triple Integrals in Cylindrical and Spherical Coordinates

                                                                  by SGLee - HSKim - VLang- SWSun

 

1. Find .

 

     

                                              .




2. Find the volume of the solid cut from the cylinder   by the sphere of  radius  and centered at the origin.

 

    

    

       

          as 

         ,   

      

      

      .




3. Find the volume cut from the cone  by the sphere .

 

 

      

      

        .




4. Find the volume of the solid bounded by the spherical surface   

    and the circular cone .

 

     

     

       

       .




5. Find the volume of the solid  that lies above the cone  and below the sphere

   .

 

 

      

      

          

          .




 6. Evaluate  where  and  is the surface whose side  is the cylinder ,

           whose bottom  is the disk  in the plane ,

           and whose top  is the part of the plane  that lies above .

           http://matrix.skku.ac.kr/cal-lab/cal-14-6-2.html  

 

 













7. Find the volume of the region common to the intersecting cylinders  and .




8. Find the volume of the region bounded below by the paraboloid  and above by the plane .







9. Find the volume cut from the sphere  by the cylinder .




10. Evaluate , where  is the region inside  in the first octant.




11. Find the volume bounded above by the sphere  and below by the paraboloid .




                                                      Back to Part II