http://matrix.skku.ac.kr/Cal-Book/

               by   SGLee


Rules for Inequalities


1. If , then .

2. If , then  .

3. If , then .

4.  If , then .

5. If , then .

6. If , then .

7. If , then .

8. If , then  .

9. If , then .


Special Functions


1. Exponential Functions

If and , then a function of the form is called an exponential function.

The number is called the base and is called the exponential.

http://matrix.skku.ac.kr/Mobile-Sage-G/sage-grapher.html


2. Logarithmic Functions

The logarithmic with base and , is defined by .


3. Inverse Trigonometric Functions

 

 


4. Hyperbolic Functions

            

            

              


5. Inverse Hyperbolic Functions

       

       

             

             

      

       

http://matrix.skku.ac.kr/cal-lab/cal-1-2-Rational-Fts.html

http://matrix.skku.ac.kr/cal-lab/cal-9-1-example-2.html


Formulas of Trigonometric Functions


1. Addition and Subtraction Formulas


2. Double Angle Formulas


3. Half Angle Formulas


4. Triple Angle Formulas

 


5. Product-to-Sum

       

   


6. Sun-to-Product

        

        


7. Linear Combination

   where,

   where,


Limits

http://matrix.skku.ac.kr/cal-lab/SKKU-Cell-Epsilon-Delta.html

http://matrix.skku.ac.kr/cal-lab/cal-Limit.html


1. Limit Laws

Suppose that the limits and exist and is a constant. Then

 

 if

, where is a positive integer.

, where is a positive integer.

    (If is even, we require )

http://matrix.skku.ac.kr/cal-lab/cal-2-1-7.html

http://matrix.skku.ac.kr/cal-lab/cal-2-2-3.html


2. Squeeze Theorem (or Sandwich Theorem)

If when is near and

  then

http://matrix.skku.ac.kr/cal-lab/cal-2-1-12.html



Derivatives

1. Differentiation Rules

  where is a positive integer and is a constant.


2. Chain Rule

 If is any real number and is differentiable and , then .


3. Parametric Formula

For the parametric equations: and ,

 ,


4. Implicit Function

  Let be an implicit function.

  

   where .

5. Inverse Function

     or 

6. Trigonometric Functions

          

         

         

http://matrix.skku.ac.kr/cal-lab/cal-3-3-Exm24.html


7. Inverse Trigonometric Functions

       

     

        

http://matrix.skku.ac.kr/cal-lab/cal-3-2-13.html


8. Logarithmic Functions

                 

          


9. Exponential Functions

                  

        


10. Hyperbolic Functions

           

           

         


11. Inverse Hyperbolic Functions

        

              

           

           

     

    



General Rules of Integration

http://matrix.skku.ac.kr/cal-lab/cal-RiemannSum.html

http://matrix.skku.ac.kr/cal-lab/cal-5-1-exs-1.html

http://matrix.skku.ac.kr/cal-lab/cal-6-1-example-6.html

http://matrix.skku.ac.kr/cal-lab/cal-6-3-17.html

http://matrix.skku.ac.kr/cal-lab/cal-12-1-Rotations-B.html


1. Basic Forms

  

http://matrix.skku.ac.kr/cal-lab/cal-7-7-Exm-8.html

,

http://matrix.skku.ac.kr/cal-lab/cal-5-2-20.html


2. Trigonometric Forms

http://matrix.skku.ac.kr/cal-lab/cal-5-4-exm-7.html

http://matrix.skku.ac.kr/cal-lab/cal-8-3-3.html 

  

  

  

 


3. Hyperbolic Forms

http://matrix.skku.ac.kr/cal-lab/cal-8-1-9.html


4. Forms Involving

  

  

  

  

  

  

  

   


5. Inverse Trigonometric Forms

http://myhandbook.info/form_integ.html


Series


1. Taylor Series

http://matrix.skku.ac.kr/cal-lab/cal-10-5-Exm-11.html


2. Maclaurin Series

,               

,               

,     

,  


3. Binomial Series

If  and are any real numbers and is a positive integer, we have

            

where and


Vectors


1. Dot Product

Let and .

http://matrix.skku.ac.kr/cal-lab/cal-11-3-2.html


2. Projections

Scalar projection of onto : ,

Vector projection of onto :

http://matrix.skku.ac.kr/cal-lab/cal-11-5-20.html


3. Definition and Properties of Cross Product

   http://matrix.skku.ac.kr/cal-lab/cal-11-4-Exs-6.html

Let two nonzero vectors and are two sides of a parallelogram,

then the area of the parallelogram is .

http://matrix.skku.ac.kr/cal-lab/cal-11-4-10.html

http://matrix.skku.ac.kr/cal-lab/cal-11-4-16.html 


4. Rules of Limits

 

,

http://matrix.skku.ac.kr/cal-lab/9-5-Example-7.html


5. Rules of Differentiation

   http://myhandbook.info/form_diff.html

 where is a scalar


http://matrix.skku.ac.kr/cal-lab/cal-4-3-24.html

http://matrix.skku.ac.kr/cal-lab/cal-4-2-9.html 


6. Derivative of a Vector Function

If , then

http://matrix.skku.ac.kr/cal-lab/cal-13-2-Exm6.html

http://matrix.skku.ac.kr/cal-lab/cal-12-4-3.html

http://matrix.skku.ac.kr/cal-lab/cal-13-2-20.html

http://matrix.skku.ac.kr/cal-lab/cal-13-2-Exm6.html


7. Integral of a Vector Function

If , then


8. Arc Length

http://matrix.skku.ac.kr/cal-lab/cal-8-1-9.html

http://matrix.skku.ac.kr/cal-lab/cal-8-1-11.html 

http://matrix.skku.ac.kr/cal-lab/cal-13-3-2.html


9. Curvature

,

http://matrix.skku.ac.kr/cal-lab/cal-13-3-12.html


10. Equations of Line

 : a vector equation

          : parametric equations

http://matrix.skku.ac.kr/cal-lab/11-5-Exmaple-7.html 

     : a symmetric equation

http://matrix.skku.ac.kr/cal-lab/11-5-Exmaple-14.html


11. Equation of Plane

 : a standard form of a plane

                 : a vector version of a plane

    : parametric equations of a plane

http://matrix.skku.ac.kr/cal-lab/cal-11-5-20.html 



Formulas of Vector Calculus

http://en.wikipedia.org/wiki/Vector_calculus_identities 

1. Line Integral

http://matrix.skku.ac.kr/cal-lab/Sec15-2-1.html

http://matrix.skku.ac.kr/cal-lab/Sec15-4-Exs-1.html


2. Path Independent Theorem

           Let be a potential function for .

  For any piecewise smooth curve from and ,

          

http://matrix.skku.ac.kr/cal-lab/Sec15-2-Exm-1.html 


3. Area of a Plane Region

If has a piecewise smooth boundary with positive orientation,

then the area of is

 


4. Area of a Surface

http://matrix.skku.ac.kr/cal-lab/cal-8-2-Exm-4.html

http://matrix.skku.ac.kr/cal-lab/cal-8-2-3.html 

http://matrix.skku.ac.kr/cal-lab/cal-8-2-4.html 

http://matrix.skku.ac.kr/cal-lab/cal-0-a.html 


5. Surface Integral

http://matrix.skku.ac.kr/cal-lab/cal-14-5-1.html

http://matrix.skku.ac.kr/cal-lab/Sec15-6-Exm-4.html

http://matrix.skku.ac.kr/cal-lab/Sec15-6-Exm-5.html

http://matrix.skku.ac.kr/cal-lab/Sec15-6-Exm-8.html

http://matrix.skku.ac.kr/cal-lab/Sec15-7-Exm-2.html

http://matrix.skku.ac.kr/cal-lab/cal-15-9-Exam-3.html


6. Gradient

http://matrix.skku.ac.kr/cal-lab/cal-12-2-2.html


7. Divergence

http://matrix.skku.ac.kr/cal-lab/Sec15-5-Exm-3.html


8. Curl

http://matrix.skku.ac.kr/cal-lab/Sec15-8-Exm-2.html


9. Laplace Operator

http://matrix.skku.ac.kr/cal-lab/cal-12-2-6.html


10. Vector Triple Products

http://matrix.skku.ac.kr/cal-lab/cal-11-4-16.html


Theorems on Vector Calculus


1. Green's Theorem

 

http://matrix.skku.ac.kr/cal-lab/Sec15-4-Exm-1.html

http://matrix.skku.ac.kr/cal-lab/Sec15-4-Exs-10.html

http://matrix.skku.ac.kr/cal-lab/cal-15-2-10.html


2. Stoke's Theorem

 

http://matrix.skku.ac.kr/cal-lab/Sec15-5-Exm-3.html

http://matrix.skku.ac.kr/cal-lab/cal-14-7-4.html

http://matrix.skku.ac.kr/cal-lab/cal-15-5-5.html 


3. Divergence Theorem

  div . 

http://matrix.skku.ac.kr/cal-lab/Sec15-5-Exs-7.html 

http://matrix.skku.ac.kr/cal-lab/cal-14-8-1.html 

http://matrix.skku.ac.kr/cal-lab/cal-14-8-5.html 

http://matrix.skku.ac.kr/cal-lab/cal-15-8-Exs-8.html 


Mobile Sage Grapher : http://matrix.skku.ac.kr/Mobile-Sage-G/sage-grapher.html

                                http://math1.skku.ac.kr/pub/

                                         http://math1.skku.ac.kr/home/pub/1433/


   

                    * http://matrix.skku.ac.kr/Cal-Book/                    ■