http://matrix.skku.ac.kr/Cal-Book/
by SGLee
Rules for Inequalities
1. If , then
.
2. If , then
.
3. If , then
.
4. If , then
.
5. If , then
.
6. If , then
.
7. If , then
.
8. If , then
.
9. If , then
.
Special Functions
1. Exponential Functions
If and
, then a function of the form
is called an exponential function.
The number is called the base and
is called the exponential.
http://matrix.skku.ac.kr/Mobile-Sage-G/sage-grapher.html
2. Logarithmic Functions
The logarithmic with base and
, is defined by
.
3. Inverse Trigonometric Functions
4. Hyperbolic Functions
5. Inverse Hyperbolic Functions
http://matrix.skku.ac.kr/cal-lab/cal-1-2-Rational-Fts.html
http://matrix.skku.ac.kr/cal-lab/cal-9-1-example-2.html
Formulas of Trigonometric Functions
1. Addition and Subtraction Formulas
2. Double Angle Formulas
3. Half Angle Formulas
4. Triple Angle Formulas
5. Product-to-Sum
6. Sun-to-Product
7. Linear Combination
where,
where,
Limits
http://matrix.skku.ac.kr/cal-lab/SKKU-Cell-Epsilon-Delta.html
http://matrix.skku.ac.kr/cal-lab/cal-Limit.html
1. Limit Laws
Suppose that the limits and
exist and
is a constant. Then
if
, where
is a positive integer.
, where
is a positive integer.
(If is even, we require
)
http://matrix.skku.ac.kr/cal-lab/cal-2-1-7.html
http://matrix.skku.ac.kr/cal-lab/cal-2-2-3.html
2. Squeeze Theorem (or Sandwich Theorem)
If when
is near
and
then
http://matrix.skku.ac.kr/cal-lab/cal-2-1-12.html
Derivatives
1. Differentiation Rules
where
is a positive integer and
is a constant.
2. Chain Rule
If is any real number and
is differentiable and
, then
.
3. Parametric Formula
For the parametric equations: and
,
,
4. Implicit Function
Let be an implicit function.
where
.
5. Inverse Function
or
6. Trigonometric Functions
http://matrix.skku.ac.kr/cal-lab/cal-3-3-Exm24.html
7. Inverse Trigonometric Functions
http://matrix.skku.ac.kr/cal-lab/cal-3-2-13.html
8. Logarithmic Functions
9. Exponential Functions
10. Hyperbolic Functions
11. Inverse Hyperbolic Functions
General Rules of Integration
http://matrix.skku.ac.kr/cal-lab/cal-RiemannSum.html
http://matrix.skku.ac.kr/cal-lab/cal-5-1-exs-1.html
http://matrix.skku.ac.kr/cal-lab/cal-6-1-example-6.html
http://matrix.skku.ac.kr/cal-lab/cal-6-3-17.html
http://matrix.skku.ac.kr/cal-lab/cal-12-1-Rotations-B.html
1. Basic Forms
http://matrix.skku.ac.kr/cal-lab/cal-7-7-Exm-8.html
,
http://matrix.skku.ac.kr/cal-lab/cal-5-2-20.html
2. Trigonometric Forms
http://matrix.skku.ac.kr/cal-lab/cal-5-4-exm-7.html
http://matrix.skku.ac.kr/cal-lab/cal-8-3-3.html
3. Hyperbolic Forms
http://matrix.skku.ac.kr/cal-lab/cal-8-1-9.html
4. Forms Involving
5. Inverse Trigonometric Forms
http://myhandbook.info/form_integ.html
Series
1. Taylor Series
http://matrix.skku.ac.kr/cal-lab/cal-10-5-Exm-11.html
2. Maclaurin Series
,
,
,
,
,
3. Binomial Series
If and
are any real numbers and
is a positive integer, we have
where and
Vectors
1. Dot Product
Let and
.
http://matrix.skku.ac.kr/cal-lab/cal-11-3-2.html
2. Projections
Scalar projection of onto
:
,
Vector projection of onto
:
http://matrix.skku.ac.kr/cal-lab/cal-11-5-20.html
3. Definition and Properties of Cross Product
http://matrix.skku.ac.kr/cal-lab/cal-11-4-Exs-6.html
Let two nonzero vectors and
are two sides of a parallelogram,
then the area of the parallelogram is .
http://matrix.skku.ac.kr/cal-lab/cal-11-4-10.html
http://matrix.skku.ac.kr/cal-lab/cal-11-4-16.html
4. Rules of Limits
,
http://matrix.skku.ac.kr/cal-lab/9-5-Example-7.html
5. Rules of Differentiation
http://myhandbook.info/form_diff.html
where
is a scalar
http://matrix.skku.ac.kr/cal-lab/cal-4-3-24.html
http://matrix.skku.ac.kr/cal-lab/cal-4-2-9.html
6. Derivative of a Vector Function
If , then
http://matrix.skku.ac.kr/cal-lab/cal-13-2-Exm6.html
http://matrix.skku.ac.kr/cal-lab/cal-12-4-3.html
http://matrix.skku.ac.kr/cal-lab/cal-13-2-20.html
http://matrix.skku.ac.kr/cal-lab/cal-13-2-Exm6.html
7. Integral of a Vector Function
If , then
8. Arc Length
http://matrix.skku.ac.kr/cal-lab/cal-8-1-9.html
http://matrix.skku.ac.kr/cal-lab/cal-8-1-11.html
http://matrix.skku.ac.kr/cal-lab/cal-13-3-2.html
9. Curvature
,
http://matrix.skku.ac.kr/cal-lab/cal-13-3-12.html
10. Equations of Line
: a vector equation
: parametric equations
http://matrix.skku.ac.kr/cal-lab/11-5-Exmaple-7.html
: a symmetric equation
http://matrix.skku.ac.kr/cal-lab/11-5-Exmaple-14.html
11. Equation of Plane
: a standard form of a plane
: a vector version of a plane
: parametric equations of a plane
http://matrix.skku.ac.kr/cal-lab/cal-11-5-20.html
Formulas of Vector Calculus
http://en.wikipedia.org/wiki/Vector_calculus_identities
1. Line Integral
http://matrix.skku.ac.kr/cal-lab/Sec15-2-1.html
http://matrix.skku.ac.kr/cal-lab/Sec15-4-Exs-1.html
2. Path Independent Theorem
Let be a potential function for
.
For any piecewise smooth curve from
and
,
http://matrix.skku.ac.kr/cal-lab/Sec15-2-Exm-1.html
3. Area of a Plane Region
If has a piecewise smooth boundary
with positive orientation,
then the area of is
4. Area of a Surface
http://matrix.skku.ac.kr/cal-lab/cal-8-2-Exm-4.html
http://matrix.skku.ac.kr/cal-lab/cal-8-2-3.html
http://matrix.skku.ac.kr/cal-lab/cal-8-2-4.html
http://matrix.skku.ac.kr/cal-lab/cal-0-a.html
5. Surface Integral
http://matrix.skku.ac.kr/cal-lab/cal-14-5-1.html
http://matrix.skku.ac.kr/cal-lab/Sec15-6-Exm-4.html
http://matrix.skku.ac.kr/cal-lab/Sec15-6-Exm-5.html
http://matrix.skku.ac.kr/cal-lab/Sec15-6-Exm-8.html
http://matrix.skku.ac.kr/cal-lab/Sec15-7-Exm-2.html
http://matrix.skku.ac.kr/cal-lab/cal-15-9-Exam-3.html
6. Gradient
http://matrix.skku.ac.kr/cal-lab/cal-12-2-2.html
7. Divergence
http://matrix.skku.ac.kr/cal-lab/Sec15-5-Exm-3.html
8. Curl
http://matrix.skku.ac.kr/cal-lab/Sec15-8-Exm-2.html
9. Laplace Operator
http://matrix.skku.ac.kr/cal-lab/cal-12-2-6.html
10. Vector Triple Products
http://matrix.skku.ac.kr/cal-lab/cal-11-4-16.html
Theorems on Vector Calculus
1. Green's Theorem
http://matrix.skku.ac.kr/cal-lab/Sec15-4-Exm-1.html
http://matrix.skku.ac.kr/cal-lab/Sec15-4-Exs-10.html
http://matrix.skku.ac.kr/cal-lab/cal-15-2-10.html
2. Stoke's Theorem
http://matrix.skku.ac.kr/cal-lab/Sec15-5-Exm-3.html
http://matrix.skku.ac.kr/cal-lab/cal-14-7-4.html
http://matrix.skku.ac.kr/cal-lab/cal-15-5-5.html
3. Divergence Theorem
div
.
http://matrix.skku.ac.kr/cal-lab/Sec15-5-Exs-7.html
http://matrix.skku.ac.kr/cal-lab/cal-14-8-1.html
http://matrix.skku.ac.kr/cal-lab/cal-14-8-5.html
http://matrix.skku.ac.kr/cal-lab/cal-15-8-Exs-8.html
Mobile Sage Grapher : http://matrix.skku.ac.kr/Mobile-Sage-G/sage-grapher.html
http://math1.skku.ac.kr/home/pub/1433/
* http://matrix.skku.ac.kr/Cal-Book/ ■