Spring 2016, LA Midterm Exam - 채점용 답안(1 hour In class Exan						In class Exam)	Sign				
Course	Linear Algebra		GEDB003	41	Prof.	Sang-Gu Lee					
Major		Year		Student No.			Name				
확년				9면	<u>학번</u>						
1 Fill out	the choice boxee before ve	이르 드오 기이는									
1. Fill out the above boxes before you start this Exam. (학원, 이듬 등을 기입					·들 기업하고 감독자 달인) Olimite Participa						
2. Honor	2. Honor Code: (시험 부정행위시 해당 교과목 성적이 "F" 처리됨은 물론 징계위원회에 회부될 수 있습니다.)						Exan	1 04	10		
3. You can go out only after the permission from proctors. (감독위원의 지시가 있기 전에는 고사장 밖으로 나갈 수 없으며, 감독					·독위원의 퇴실 지시가 있으면 답안지를 감				16		
독위원 4. You ma	게 제줄한 후에 퇴실하시기 비 v use the following <sage< th=""><th>├랍니다.) codes> in</th><th>vour answers.</th><th>(중간고사까지는</th><th>한국어</th><td>답안도 OK)</td><td></td><td></td><td></td></sage<>	├랍니다.) codes> in	vour answers.	(중간고사까지는	한국어	답안도 OK)					
	,				- · ·						
var('a, b, c, c	') # Defin	e variables		var('x_v')		# D	efine va	iables			
eq1=3*a+3*b==12			า1	$f = 7^{*}x^{2} + 4^{*}x^{*}y + 4^{*}y^{2}-23$ # Define a function							
eq2=5*a+2*b==13			implicit_pl	implicit_plot(f, (x, -10, 10), (y, -10, 10)) # implicit Plot							
solve([eq1, eq2], a,b) # Solve eq's			parametrio	c_plot((x,y), (t, -10, 10), rgbc	olor='red	') # P	lot			
A=matrix(QQ, 3, 3, [3, 0, 0, 0, 0, 2, 0, 3, 4]); # Matrix					plot3d(y^2+1-x^3-x, (x, -pi, pi), (y, -pi, pi)) # 3D Plot						
x=vector([3, 1	, 2]) # Defin	e vector x		A=random	A=random_matrix(QQ,7,7) # random matrix of size 7 over Q						
A.augment(x)	# [A: :	x]		F=random	F=random_matrix(RDF,7,7) # random matrix of size 7 over R						
A.echelon_for	m() # Find I	RREF		P,L,U=A.LU	P,L,U=A.LU() # LU (P: Permutation M. / L, U						
A.inverse()	A.inverse() # Find inverse			print P, L,	print P, L, U						
A.det()	# Find c	leterminan	t								
A.adjoint()	# Find a	adjoint ma	trix	h(x, y, z)	$ \begin{array}{l} h(x, y, z) = [x+2*y-z, y+z, x+y-2*z] \\ T = linear transformation(h) = \# T \end{array} $						
A.charpoly()	A.charpoly() # Find charct. ploy		/	print T.kei	print T.kernel() # Find a basis for kernel(T)						
A.eigenvalues() # Find eigen		eigenvalue	5	C=column_matrix([x1, x2, x3])							
A.eigenvectors_right()		eigenvecto	rs	aug=D.au	aug=D.augment(C, subdivide=True)						
A.rank()	# Find	rank of A		Q=aug.rre	er()						
A.right_nullity	() # Find	nullity of A	A	[G,mu]=A.	gram_sch	midt() # G-S					
var('t')	# Define variab	B=matrix(B=matrix([Ğ.row(i)/G.row(i).norm() for i in range(0,4)]); B #								
x=2+2*t	# Define a pa	rametric e	q.	A.H # coi	A.H # conjugate transpose of A						
y=-3*t-2 A.jordan_for						A.jordan_form() # Jordan Canonical Form of A					
bool(A== B) # Are A and B same?					<sample algebra="" codes="" linear="" sage=""></sample>						

I. (1pt x 20= 20pt) True(T) or False(F).

1. (**F**) For any two $n \times n$ matrices A and B, $\det(A B) = \det(B) \det(A)$ and $(AB)^T = A^T B^T$

- 2. (T) A given matrix can be written uniquely as a sum of a symmetric matrix and a skew-symmetric matrix.
- **3.** (T) If $A = P^{-1}BP$, then det $A = \det B$.
- **4.** (T) If $A, B \in M_n$ are lower triangular matrices, then the product C = AB is also lower triangular.
- **5.** (**F**) Every linear independent vectors in \mathbb{R}^n are orthogonal vectors.
- **6.** (T) Any subspace of \mathbb{R}^2 is either one of a line through the origin or \mathbb{R}^2 or $\{\mathbf{0}\}$.
- 7. (T) For a set of natural numbers $S = \{1, 2, ..., n\}$, permutation is a one to one function from S to S.
- **8.** (T) The set $S = \{(1,1,0), (0,0,-2), (0,1,3)\}$ spans \mathbb{R}^3 .
- 9. (T) Finding all solutions of a polynomial is a same problem of finding all eigenvalues of a corresponding (companion) matrix.
- **10.** (T) There is a bijective function (one to one correspondence) between the set of all permutations on $S_n = \{1, 2, ..., n\}$ and the set of all $n \times n$ permutation matrices.
- 11. (T) If A is a $n \times n$ real orthogonal matrix, then the linear mapping $\mathbf{x} \mapsto A\mathbf{x}$ preserves length.
- **12.** (T) For a transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, if $T(\mathbf{u}) = T(\mathbf{v}) \Rightarrow \mathbf{u} = \mathbf{v}$, then it is called injective.
- **13.** (T) For a nonzero vector $\mathbf{n} = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$, the hyperplane $\Pi : \mathbf{n}^{\perp} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{n} \cdot \mathbf{x} = 0, \mathbf{x} \in \mathbb{R}^n\}$ is called the orthogonal complement of \mathbf{n} . And the vector \mathbf{n} is called the normal vector of the hyperplane Π .
- 14. (T) A normal vector perpendicular to the plane z = 3y + 8 is $\mathbf{n} = (0, 3, -1)$.
- **15.** (T) If E is an elementary matrix, then A and EA has a same solution set.
- 16. (T) If there are n unknowns and k free variables in $A\mathbf{x} = \mathbf{b}$, then there are n k leading variables.
- 17. (F) Every vector in the eigenspace of A corresponding to its eigenvalue λ is an eigenvector.
- **18.** (F) For any $n \times n$ matrix A with n > 1, $\det(\operatorname{adj} A) = (\det A)^n$.
- **19.** (T) Let $A = [a_{ij}]_{n \times n} \in M_n(\mathbb{R})$. If $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation, T_A is one-to-one if and only if T_A is onto.
- **20.** (F) For linear transformations $T : \mathbb{R}^n \to \mathbb{R}^k$ and $S : \mathbb{R}^k \to \mathbb{R}^m$, $S \circ T$ is one-to-one implies S is one-to-one.

II. (2pt x 5 = 10pt) State or Define (Choose/Mark 5 only: Fill the boxes and/or state).

1. State the Cauchy–Schwarz inequality

For any
$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$
,
 $|\mathbf{x} \cdot \mathbf{y}| \leq ||\mathbf{x}|| ||\mathbf{y}||$
Th equality holds iff $\mathbf{x} = k\mathbf{y}$ for some $k \in \mathbb{R}$.

2. [Laplace cofactor expansion] Let A be an $n \times n$ matrix. For any i, j $(1 \le i, j \le n)$ the following holds. $|A| = a_{11}A_{11} + a_{12}A_{12} + \cdots + a_{1n}A_{1n}$ (cofactor expansion <u>along the 1st row</u>)

3. [Determinant] The determinant of an $n \times n$ matrix $A = [a_{ij}]$ is defined as

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$$

4. [Linearly independent, linearly dependent]

If $S = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\} \subseteq \mathbb{R}^n$ satisfies

$$\begin{split} &c_1\mathbf{x}_1+c_2\mathbf{x}_2+\ \cdots\ +\ c_k\mathbf{x}_k=\mathbf{0} \quad (c_1,\ c_2,\ \ldots,\ c_k\!\in\mathbb{R} \) \\ \Rightarrow \ c_1=c_2=\ \cdots\ =\ c_k=0 \end{split}$$

then $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ (or subset *S*) are called **linearly independent**. If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ (or subset *S*) are not linearly independent, then it is called **linearly dependent**.

5. [kernel] Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then

The kernel of
$$T = \ker T = \{ \mathbf{v} \in \mathbb{R}^n \mid T(\mathbf{v}) = \mathbf{0} \}.$$

6. [(Real) orthogonal matrix] An $n \times n$ real matrix $A = [a_{ij}]$ is called an orthogonal matrix if

$$A^{-1} = A^{T}$$

7. [Standard Matrix of L.T.]

If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation where $T(\mathbf{x}) = A\mathbf{x}$, $\forall \mathbf{x} \in \mathbb{R}^n$, then the standard matrix A = [T] of T is

$$A = \left[T(\mathbf{e}_1) : T(\mathbf{e}_2) : \dots : T(\mathbf{e}_n) \right].$$

8. [skew-symmetric matrix] An $n \times n$ real matrix $A = [a_{ij}]$ is called a skew-symmetric matrix if

$$A^T = -A$$

III. (3pt x 8 = 24pts) Find or Explain (Fill the boxes) :

1. $[\operatorname{proj}_{\mathbf{x}}\mathbf{y}]$ For vectors $\mathbf{y} = (3, -1, 2)$ and $\mathbf{x} = (-4, 4, 2)$, find the vector $\mathbf{w} = \mathbf{y} - \operatorname{proj}_{\mathbf{x}}\mathbf{y}$ in \mathbb{R}^3 and $\mathbf{y} \cdot \mathbf{w}$.

Sol
$$\operatorname{proj}_{\mathbf{x}}\mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}}\mathbf{x} = (\frac{4}{3}, -\frac{4}{3}, -\frac{2}{3}), \quad \mathbf{w} = \mathbf{y} - \operatorname{proj}_{\mathbf{x}}\mathbf{y} = (\frac{5}{3}, \frac{1}{3}, \frac{8}{3}). \quad \mathbf{y} \cdot \mathbf{w} = 10.$$

2. Find vector equation of the plane that passes a line x = 1 + 3t, y = 1 - 2t, z = -2 + 2t ($t \in \mathbb{R}$) and one point P(4,1,1).

Sol
$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2$$
 $(t_1, t_2 \in \mathbb{R})$
On $l : x = 1 + 3t$, $y = 1 - 2t$, $z = -2 + 2t$ for all $t \in \mathbb{R}$.
Say $Q(4, -1, 0)$ when $t = 1$. Say $R(1, 1, -2)$ when $t = 0$.

$$\Rightarrow \mathbf{v}_1 = \overrightarrow{PQ} = (0, -2, -1), \quad \mathbf{v}_2 = \overrightarrow{PR} = (-3, 0, -3), \quad \overrightarrow{OP} = \mathbf{x}_0 = (4, 1, 1)$$

$$\Rightarrow \mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 = (4, 1, 1) + t_1 (0, -2, -1) + t_2 (-3, 0, -3)$$
$$= (4 - 3t_2, 1 - 2t_1, 1 - t_1 - 3t_2)$$

 \therefore **x**= $(4-3t_2, 1-2t_1, 1-t_1-3t_2)$ is the vector equation of the plane.

3. (5pts) Let A be a 3×3 matrix, and assume that $\operatorname{adj} A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 7 & 6 \end{bmatrix}$

(1) Find $\det(\operatorname{adj} A)$.

(2) Find A.

Sol

(1) $\det(\operatorname{adj} A) = (\det(A))^{n-1}$ \therefore $\det(\operatorname{adj} A) = 4$,

(2) From
$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A$$
, $A = (A^{-1})^{-1} = (\frac{1}{|A|} \operatorname{adj} A)^{-1} = |A| (\operatorname{adj} A)^{-1}$, $(\det(A))^2 = \det(\operatorname{adj} A)$.
 $A = \pm 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 7 & 6 \end{bmatrix}^{-1} = \pm 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{2} & -\frac{1}{2} \\ 0 & -\frac{7}{4} & \frac{3}{4} \end{bmatrix} = \pm \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -\frac{7}{2} & \frac{3}{2} \end{bmatrix}$

4. Let T_1 and T_2 are defined as follows:

 $T_1(x_1, x_2, x_3) = (4x_1, -2x_1 + x_2, -x_1 - 3x_2), \qquad T_2(x_1, x_2, x_3) = (x_1 + 2x_2, -x_3, 4x_1 - x_3).$ (1) Find the standard matrix for each T_1 and T_2 .

(2) Find the standard matrix for each $T_2 \circ T_1$ and $T_1 \circ T_2$.

Sol
(1)
$$T_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix}, T_1 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, T_1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \therefore [T_1] = \begin{pmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -3 & 0 \end{bmatrix}$$

 $T_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, T_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, T_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} \qquad \therefore [T_2] = \begin{bmatrix} 12 & 0 \\ 0 & 0 - 1 \\ 4 & 0 - 1 \end{bmatrix}$
(2) $[T_2 \circ T_1] = [T_2][T_1] = \begin{bmatrix} 0 & 20 \\ 1 & 30 \\ 17 & 30 \end{bmatrix}, \qquad [T_1 \circ T_2] = [T_1][T_2] = \begin{bmatrix} 4 & 8 & 0 \\ -2 - 4 - 1 \\ -1 - 2 & 3 \end{bmatrix}$

Sage) http://math3.skku.ac.kr/home/pub/29

5. Let the characteristic polynomial of matrix A be $p(\lambda) = (\lambda - 2)(\lambda - 3)(\lambda - 4)$. Find eigenvalues of matrix A^2 .

- Sol $p(\lambda) = (\lambda 2)(\lambda 3)(\lambda 4)$ => $\lambda_1 = 2$, $\lambda_2 = 3$, $\lambda_3 = 4$ are eigenvalues of matrix A.
 - => $A_{X} = \lambda_{X}$, so $A^{2}_{X} = \lambda A_{X} = \lambda(\lambda_{X}) = \lambda^{2}_{X}$.
 - \therefore The eigenvalues of matrix A^2 is λ^2 , which are $\lambda_1^2 = 4$, $\lambda_2^2 = 9$ and $\lambda_3^2 = 16$.

6. Find a if
$$\lambda = 1$$
 is an eigenvalue of $\begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & a \end{bmatrix}$.

Sol

$$|I-A| = \begin{vmatrix} -1 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 1-a \end{vmatrix} = 4 - 4(1-a) = 4a = 0 \implies a = 0.$$

7. [Invertible Matrix Theorem] Let A be an $n \times n$ matrix.

Which of the following statements is not equivalent to "the matrix A is invertible."?

(Choose two)

- (1) Column vectors of A are linearly independent.
- (2) Row vectors of A are linearly dependent.
- (3) $A\mathbf{x} = \mathbf{0}$ has a unique solution $\mathbf{x} = \mathbf{0}$.
- (4) For any $n \times 1$ vector **b**, $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- (5) A and I_n are row equivalent.
- (6) A and I_n are column equivalent.
- (7) $\det(A) = 0$
- (8) $\lambda = 0$ is not an eigenvalue of A.
- (9) $T_A: \mathbb{R}^n \to \mathbb{R}^n$ by $T_A(\mathbf{x}) = A \mathbf{x}$ is one-to-one.
- (10) $T_A \colon \mathbb{R}^n \to \mathbb{R}^n$ by $T_A(\mathbf{x}) = A \mathbf{x}$ is onto.

Ans 2 , 7 .

8. Determine the number of free variables in the solution set (space) of the homogeneous linear system of equations.

$$\begin{cases} x - 6y - 2z - 2w = 0 \\ 3y + z + w = 0 \\ 5x - 18y - 6z - 6w = 0 \end{cases}$$
Ans
$$A = \begin{bmatrix} 1 & -6 - 2 - 2 \\ 0 & 3 & 1 & 1 \\ 5 - 18 - 6 - 6 \end{bmatrix} , \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} , \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$RREF(A^{T}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

=> The matrix A^{T} has **two** linearly independent row vectors.

 \Rightarrow The matrix A has two linearly independent column vectors.

So the number of free variables in the solution set of the lhomogeneous linear system of equations is two.

IV. (5+5+5=15pt) Python/ Sage Computations.

1. (5pts) We solved the following LSE using Gauss-Jordan elimination (and Sage). Fill the blanks.

$$2x + 7y + z - 2u + 3v = 1$$

$$3x - 2y + 4z - 6u = -2$$

$$x + y - z - 3u - v = -1$$

$$5x - y + 2z - 8u + 2v = 3$$

$$y + z + u + v = 4$$

Sol - Find RREF of [A : b].

A=matrix([[2, 7, 1, -2, 3], [3, -2, 4, -6, 0], [1, 1, -1, -3, -1], [5, -1, 2, -8, 2], [0, 1, 1, 1, 1]]) b=vector([1, -2, -1, 3, 4]) print "RREF([A : b]) ="

print _____A.augment(b).rref()

실행(E	valuate)					
RRE	EF([A :]	b]) =				
[1	0	0	0	0	424/13]
[0	1	0	0	0	20/13]
[0	0	1	0	0	17/52]
[0	0	0	1	0	425/26]
[0	0	0	0	1 -	-739/52]

:. The solution is x = 424/13, y = 20/13, z = 17/52, u = 425/26, v = -739/52.

2. (5pts) As shown in the picture, find a matrix transformation which transforms a circle with radius 1 to the given ellipse.

Sage : http://math3.skku.ac.kr/home/pub/343

 $\begin{bmatrix} 7 & -2 & -2 & 1 & 0 \\ 3 & 0 & -2 & 1 & 2 \\ 12 & -4 & -3 & 2 & 0 \\ 6 & -8 & -4 & 6 & 4 \\ 1 & -2 & -2 & 1 & 6 \end{bmatrix}$ [0]and $\mathbf{y} = \begin{bmatrix} 0\\2\\4\\2\\1\end{bmatrix}$. You were asked to find **3.** (5pts) Consider $A\mathbf{x} = \mathbf{y}$ where A =

(1) Augment matrix [A: y] (2) $\operatorname{RREF}(A)$ (3) $\operatorname{Det}A$ (4) Inverse of A (4) characteristic polynomial of A (5) all eigenvalues of A (6) all eigenvectors of A. The following is your answer. Fill out the blanks to find each.

Sol)

Write	what	(4,	[(1, 1	, 2, 3, 1)],	1) me	eans in e	igenvec	tors of A	:					
eigenvec	tors =	= [(6, [((), 1, 0, 2,	2)], 1),	(4, [(1, 1,	2, 3, 1)],	1), (3, [(1,	1, 2, 2, 1	1)], 1), (2, [0	(0, 1, 0), 2, 0)]], 1), (1	, [(1, 1,	3, 2, 1)],	1)]
eigenval	ues of	A = {	6	,	4	,	3	,	2	,	1	}	•		
characte	ristic p	olynomia	al of (A)	= x^5 -	16*x^4	+ 95*x^3 -	- 260*x^2	+ 324*x ·	- 144						
[-7/6	1/6	2/3 -1/2	12 1/6]												
[-8/3	5/6	4/3 1/1	12 -1/3]												
[-4/3	2/3 1/3	$\frac{2}{3} - \frac{1}{2}$	$\frac{12}{6}$ -1/0]												
$\begin{bmatrix} -1 \\ \hline 4/2 \end{bmatrix}$	1/6	$\frac{2}{3} - \frac{1}{2}$	12 0												
inverse(<i>A</i>) =														
$\det(A)$	= 144														
RREF(A	() =]	dentity a	matrix of	size 5	•										
Now w	ve have	some c	out from	the Sage											
	13) Las	st step :	Give 'pri	nt' comm	and to s	ee what ye	ou like to	read.			-				
	11) Ste	ер 11: Ту	/pe a cor	nmand t	o find eig	- genvectors	of A (A.eig	 jenvectors_ri	ght())	and ev	aluate.		
	' 10) Ste	ер 10: Ту	/pe a cor	nmand t	o find e i	igenvalues	of A (A.e	igenvalues())	and	evaluat	e.		
	9) Step	9: Type	e a comn	nand to	find char	. polynom	ial of A	(A.charpoly	0) ह	and eva	luate.		
	8) Ster) 8 [.] Type	a comn	hand to	find inve	rse of A	(Ai	nverse())	and	evaluat	-е		
	7) Ster	, 0. Type , 7. Type		hand to	find deter	(II)	A (n.augi dei	·(Δ)		and e	evaluate			
	5) Step 6) Ster) 5: Type	e a comn	hand to	find augn	(A)	1 X [A: y]	A aug	nent(y)	f())	ar and	na evalua	late		
	A =	matrix(Q	Q,5,5,[7,-2	-2,1,0,3,0,-	-2,1,2,12,-4	,-3,2,0,6,-8,-	-4,6,4,1,-2,-2	2,1,6]) and	y = mat	rix(QQ,	5,1,[0,2,4	4,2,1])			
	4) Step	4: Defi	ne a mat	rix A in	the first	cell in rati	onal (QQ)	field.							
	3) Step	3: Clio	ck "New	workshee	t (새 워크시	l트)" butto	n.								
	2) Step	2: Туре	e class/y	our II	D: () and	d PW :	()				
	1) Step	1: Brov	vse <u>http:/</u>	/math3.sl	<u>kku.ac.kr</u>	or <u>http://m</u>	nath1.skku.a	ac.kr/ (or	http://sage.	skku.ec	du/ or	https://c	loud.sage	math.com	etc)

[Answer] 4 is an eigenvalue of A and its (algebraic) multiplicity is 1, its corresponding eigenvector is (1, 1, 2, 3, 1), and its geometric multiplicity is 1.

V. (3pt x 5 = 15pt) Explain or give a sketch of proof.

1. (3pt) Explain how you are going to show whether $\mathbf{v}_1 = (4, -5, 6)$, $\mathbf{v}_2 = (-2, 1, 3)$, $\mathbf{v}_3 = (6, -3, 10)$ are linearly independent or not.

- Sol (1) Make a 3 by 3 matrix and find the determinant of it.
 - (2) If it is not zero, they are linearly independent.
 - (3) If it is zero, they are linearly dependent.

2. Let A and I be $n \times n$ matrices. If A + I is invertible, show that $A(A + I)^{-1} = (A + I)^{-1}A$.

Proof $A^{2}+A = (A+I)A = A (A+I)$

 $=> (A+I)A(A+I)^{-1}(A+I) = (A+I)(A+I)^{-1}A(A+I)$ $=> (A+I)^{-1}(A+I)A(A+I)^{-1}(A+I)(A+I)^{-1} = (A+I)^{-1}(A+I)(A+I)^{-1}A(A+I)(A+I)^{-1}$ $=> A(A+I)^{-1} = (A+I)^{-1}A$

3. Explain why there are no matrices A, $B \in M_n$ that satisfies $AB - BA = I_n$. (Hint: Compare the trace of tr(AB - BA) and $tr(I_n)$)

Proof BWOC Suppose there are matrices $A, B \in M_n$ that satisfies $AB - BA = I_n$

$$\Rightarrow tr(AB - BA) = tr(I_n) \Rightarrow tr(AB) - tr(BA) = tr(I_n)$$
$$\Rightarrow 0 = n \qquad => <= (Contradiction)$$

Therefore there are no A, B that satisfies $AB - BA = I_n$.

4. Define a transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T(a, b, c) = \begin{bmatrix} a+b\\2c-a \end{bmatrix}$$

Determine whether if T is a linear transformation or not.

Proof

Let
$$\mathbf{x_1} = (a_1, b_1, c_1), \ \mathbf{x_2} = (a_2, b_2, c_2), \text{ and } k \in \mathbb{R}.$$

 $T(\mathbf{x}_1 + \mathbf{x}_2) = T(a_1 + a_2, b_1 + b_2, c_1 + c_2)$
 $= \begin{bmatrix} (a_1 + a_2) + (b_1 + b_2) \\ 2(c_1 + c_2) - (a_1 + a_2) \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ 2c_1 - a_1 \end{bmatrix} + \begin{bmatrix} a_2 + b_2 \\ 2c_2 - a_2 \end{bmatrix} = T(\mathbf{x_1}) + T(\mathbf{x_2})$

 $T(k\mathbf{x_1}) = T(ka_1, \, kb_1, \, kc_1)$

$$= \begin{bmatrix} ka_1 + kb_1 \\ 2kc_1 - ka_1 \end{bmatrix} \qquad = k \begin{bmatrix} a_1 + b_1 \\ 2c_1 - a_1 \end{bmatrix} \qquad = k T(\mathbf{x_1})$$

$$\therefore \quad T \text{ is a L.T.}$$

Sage : http://math3.skku.ac.kr/home/pub/343

5. Give your **sketch** of the proof on Theorem 6.3.3:

"The Image of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of \mathbb{R}^m ."

Sol

Show 1) Im(T) is closed under the vector addition.

2) Im(T) is closed under the scalar multiplication.

 $\forall \mathbf{w}_1, \mathbf{w}_2 \in \operatorname{Im} T, \exists \mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^n \text{ such that } (\exists) T(\mathbf{v}_1) = \mathbf{w}_1, T(\mathbf{v}_2) = \mathbf{w}_2$

$$\Rightarrow \mathbf{w}_1 + \mathbf{w}_2 = T(\mathbf{v}_1) + T(\mathbf{v}_2) = T(\mathbf{v}_1 + \mathbf{v}_2)$$

$$\Rightarrow \exists \mathbf{v}_1 + \mathbf{v}_2 \in \mathbb{R}^n \ \Rightarrow \ T(\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{w}_1 + \mathbf{w}_2 \in \mathbb{R}^m \quad \therefore \quad \mathbf{w}_1 + \mathbf{w}_2 \in \operatorname{Im} T$$

 $\forall \ k \in \mathbb{R}, \ k \mathbf{w}_1 = k T(\mathbf{v}_1) = T(k \mathbf{v}_1)$ $\Rightarrow \ \exists \ k \mathbf{v}_1 \in \mathbb{R}^n \ \Rightarrow \ T(k \mathbf{v}_1) = k \mathbf{w}_1 \in \mathbb{R}^m \qquad \therefore \ k \mathbf{w}_1 \in \operatorname{Im} T$

 \therefore Im(T) is a subspace of \mathbb{R}^m .

VI. LA 2016-S, Participation and more (16pt): Name: <Fill this form, Print it, Bring it and submit it just before your Midterm Exam on AM (9:00, April. 19th)</td> (시험전에 프린트하여, 빈칸을 채워서 제출하거나, 시험 중에 확인하여 채워서 시험 시간 중에 제출하면 됩니다.)

1. (10pt) Participations

(1) QnA Parti	cipations	Numbers	<Check yourself $>$: each weekly (Fr	om Sat – next Friday)
Week 1:	1	2:	5	3: 6	4: 7
Week 5:	8	6:	9	7; 10	8: 1
			Total# : (Q:	20 A: 20)	

Online Participation :	50	/ 55	(1-8th	week)
Off-line Participation/ Absence :	12	/ 1	3 (2*7	-1 holyday = 13 off line classes)

(2) Your Special Contribution :

: The number of your participations in Q&A with 'Finalized OK by SGLee' (No.),

(3) What are things that you have learned and recall well from QnA and PBL participation?

2. (5pt) Your presentation of Solutions in one Chapter.

- (1) Your Team Number () and Team members name ()
- (2) What was your chapter?
- (3) What was your role in that process?
- (4) How you can improve your presentation for Final and Final PBL Presentation?

3. (1pt, Bonus) Write anything you like to tell me.