LA Ch 10 Lab -SGLee


  그림입니다.
원본 그림의 이름: Bigbook-Linearalgebra-cover.jpg
원본 그림의 크기: 가로 587pixel, 세로 798pixel      그림입니다.
원본 그림의 이름: sglee-2.gif
원본 그림의 크기: 가로 319pixel, 세로 431pixel

 

 

Chapter 10

 

 

 

Jordan Canonical Form

 

 10.1 Finding the Jordan Canonical Form with a Dot Diagram

*10.2 Jordan Canonical Form and Generalized Eigenvectors

 10.3 Jordan Canonical Form and CAS

 10.4 Exercises


If a matrix is diagonalizable, every thing is much easier. But most of matrices are not diagonalizable. The Jordan canonical form or Jordan normal form is an upper triangular matrix of a particular form called a Jordan matrix (a simple block diagonal matrix) representing an operator with respect to some basis. The diagonal entries of the normal form are the eigenvalues of the operator, with the number of times each one occurs given by its algebraic multiplicity.


 Any square matrix has a Jordan normal form if the field of coefficients is extended to one containing all the eigenvalues of the matrix. Since each matrix has a corresponding Jordan canonical form which is similar to it, all computations can be done with this simple upper triangular matrix. The Jordan normal form is named after Camille Jordan, a French mathematician renowned for his work in various branches of mathematics. In this chapter, we will study how to find a Jordan matrix which is similar to any given matrix and how to find generalized eigenvectors.

 

Book http://matrix.skku.ac.kr/2015-Album/Big-Book-LinearAlgebra-Eng-2015.pdf

Book http://matrix.skku.ac.kr/2015-Album/BigBook-LinearAlgebra-SGLee-New-2015.pdf

 

 

  

Theorem10.1.2

 

The number of dots in the first  rows of the dot diagram for  is equal to

the dimension of solution space of  (i.e. the nullity of ).

 

 

     nullity=nullity .

 

 

Theorem10.1.3

 

For , let  denote the number of dots in the th row of the dot diagram of 

Then, the following are true.

 

   (1)    .

   (2)    If .

 

 

 By Theorem 10.1.2,
  (provided )

Also,  and

 

          

            

            

        (The number of dots in each row,, means the number of blocks of  size at least ).         

 

 

 From Theorem 10.1.3, let’s see how the dot diagram for each  is completely determined by the matrix .


  Find the Jordan Canonical Form of .

 

            .

 

 

 




(x - 3) * (x - 2)^3

  [3, 2, 2, 2]

 

The matrix  has characteristic polynomial , so  has two distinct eigenvalues 

Here  has algebraic multiplicity 1, and  has algebraic multiplicity 3. Thus, the dot diagram for  has 1 dot


                               

 

and  has one  Jordan block. That is, .

   As well, the dot diagram for  has 3 dots, and




2

1

 ,
.

 

Thus, the dot diagram for  is the following.

 

                 :        •   (number of Jordan blocks: 2)

                 :        

 has one  Jordan block and one  Jordan block. That is,

 

                     

 

  Hence, the Jordan Canonical form of  is

                                            




 http://sage.skku.edu and http://mathlab.knou.ac.kr:8080/

                                                                   

[3|0 0|0]

[-+--+-]

[0|2 1|0]

[0|0 2|0]

[-+--+-]   

[0|0 0|2]                                 ■



 

Find the Jordan Canonical Form of .

 

   

 

The matrix  has characteristic polynomial ,

   so there are two distinct eigenvalues of   and , each with algebraic multiplicity 2.  For ,

 

                        .

 

Therefore, the dot diagram for  is the following.

 

                         :  •    (Number of Jordan blocks: )

                         :  •

 

So, .

 

For  is 0(∵The number of dots  is ). Therefore, the dot diagram for   is the following:

 

                             :  • •  (Number of Jordan blocks = 2)

 

So, 

Thus, the Jordan Canonical Form of  is

                                             .        

 

 http://sage.skku.edu and http://mathlab.knou.ac.kr:8080/




                                                                  

[4 1|0|0]

[0 4|0|0]

[--+-+-]

[0 0|2|0]

[--+-+-]

[0 0|0|2]                                 ■


[Remark] 

* Jordan Canonical Form Learning Materials

● http://matrix.skku.ac.kr/2012-mobile/E-CLA/10-1.html 

● http://matrix.skku.ac.kr/2012-mobile/E-CLA/10-1-ex.html

● http://matrix.skku.ac.kr/JCF/JordanCanonicalForm-SKKU.html 

     http://matrix.skku.ac.kr/JCF/index.htm



 


10.2 *Jordan Canonical Form and Generalized Eigenvectors

 

 Reference video: https://youtu.be/YrRnCByzxNM      https://youtu.be/yJ7n0icjtNA

 Practice site: http://matrix.skku.ac.kr/knou-knowls/cla-week-15-sec-10-2.html

                        http://matrix.skku.ac.kr/sglee/03-Note/GeneralizedEV-f.pdf 

                      http://matrix.skku.ac.kr/MT-04/chp8/3p.html 

 

 

In Section 10.1, we learned the theory and method for finding a matrix ,

  called the Jordan Canonical form, such that .

   In this section, we will examine a method for finding the matrix  in the above equation.

 This method utilizes the concept of generalized eigenvectors.

 

The following matrix was referred from the wiki

http://en.wikipedia.org/wiki/Jordan_normal_form.

 

                         Let .

 

Consider the matrix . The Jordan normal form is obtained

    by some similarity transformation  , i.e. .

 

Let  have column vectors , then

 

    .

We see that

 

        

        

        

        .

 

For , we have ,

   i.e.  is an eigenvector of  corresponding to the eigenvalue .

  For , multiplying both sides by  gives .

But , so . Thus, .

   Vectors like   are called generalized eigenvectors of .

 

Definition [Generalized Eigenvectors]

Definition [Generalized Eigenvectors]

A non zero vector,  is called a generalized eigenvector of a matrix  corresponding to an eigenvalue , if there exists a positive integer  such that . The smallest such is called the order of the generalized eigenvector .

 

Thus, given an eigenvalue , its corresponding Jordan block gives rise to a Jordan chain.

 

A Jordan chain of length  corresponding to an eigenvalue  is a sequence of non zero vectors,  such that

                              .

 

The generator, or lead vector (say, ) of the chain is a generalized eigenvector such that , where  is the size of the Jordan block.

The vector  is an eigenvector corresponding to . In general,  is the pre-image of  under .

 

So the lead vector generates the chain via multiplication by .

Therefore, the statement that every square matrix  can be put in Jordan normal form is equivalent to the claim that

there exists a basis consisting only of eigenvectors and generalized eigenvectors of .



PS: More details about the Jordan Canonical Form can be found at

      http://www.uio.no/studier/emner/matnat/math/MAT2440/v11/undervisningsmateriale/genvectors.pdf. 

 

 

 

10.3 Jordan Canonical Form and CAS

 

 Reference video: http://youtu.be/LxY6RcNTEE0 

 Practice site:      http://matrix.skku.ac.kr/knou-knowls/cla-week-15-sec-10-3.html 

 

 

 

In practice, in order to find the Jordan Canonical Form of a 10  10 matrix, you need to find the roots of a characteristic polynomial of degree 10.

The factorization and rigorous calculation of these roots is impossible. 

Moreover, a 10 10 matrix requires us to calculate many exponents and coefficients.

In order to calculate these coefficients, the Gaussian elimination and related computations can be performed by various computer programs.

e.g. HLINPRAC, MATHEMATICA,  MATLAB, and the recently developed open-source program, Sage. 

The use of software for computationally complex mathematics is necessary in an increasingly technological society.

 

 

The following links provide more information about the Jordan Canonical Form and tools that allow you to explicitly find the Jordan Canonical Form for a given matrix without arduous calculations by hand.

 

1. Theory and tools : http://matrix.skku.ac.kr/JCF/  


2. Jordan Canonical Form; an algorithmic approach:

      http://matrix.skku.ac.kr/JCF/JCF-algorithm.html


3. Jordan Canonical Form (step by step) tool: 

       http://matrix.skku.ac.kr/JCF/JordanCanonicalForm-SKKU.html


4. CAS Tool : http://matrix.skku.ac.kr/2014-Album/MC-2.html  



 


Solved by 신영준 
Finalized and Final OK by SGLee

 


Problem 1

Let  be a 5×5 matrix with the only one eigenvalue with algebraic multiplicity of 5.

Find all possible types of  Jordan Canonical forms of when the number of linearly independent eigenvectors corresponding  is 2.


Sol)

Type 1

 the dot diagram for  is the following.

   =2 : ⦁⦁

    =1 : ⦁

     =1 : ⦁

      =1 : ⦁

 

                       So, 


Type 2

 the dot diagram for  is the following.

   =2 : ⦁⦁

    =2 : ⦁⦁

    =2 : ⦁

                            So,    

Note:  5= 1+4, 2+3 (there are only 2 cases in the given decreasing order.)

 

Problem 2

For the given Jordan Canonical form , calculate the following:

 

                       

(1) 

Sol) 


(2) 

Sol) 


(3) 

Sol) 


(4) 

Sol)    ■

 

Chapter 10,  Problem 3

 

Find the Jordan Canonical Form of the given matrix.

 

                          


Sol)

      그림입니다.

 The matrix  has its characteristic polynomial  = .

So  has two distinct eigenvalues .

Here =25 has algebraic multiplicity 1, =0 has algebraic multiplicity 4.

 Thus the dot diagram for  has 1 dot.                       

                                     =1 : ⦁    (number of Jordan block: 1)

Here  has one Jordan block of 11.    That is, =[25].

그림입니다.

As well, the dot diagram for  has 4 dot, and

 = 5-rank(-) = 5-1 = 4

 = rank() - rank[] = 1-1 =0

 = rank[] - rank[] = 1-1 =0

 = rank[] - rank[] = 1-1 =0

Thus, the dot diagram for  is the following.           

                              =4 :  ⦁⦁⦁⦁   (number of Jordan block: 4)

 has 4 Jordan blocks of 11 .     That is, =.

Hence, the Jordan Canonical form of  is         

 

                       ∴ ==.

Doble checked by Sage




Chapter 10,  Problem 4

Find the Jordan Canonical Form of the given matrix.

 

                  

 

그림입니다.

Sol)


 


 The matrix  has characteristic polynomial  = .

So A has three distinct eigenvalues . Here =3 has algebraic multiplicity 1, =2 has algebraic multiplicity 1 and =1 has algebraic multiplicity 3.


Thus the dot diagram for  has 1 dot.

                                  =1 ; ⦁(number of Jordan block: 1)

Here  has one 11 Jordan block. That is, =[3].


And also the dot diagram for  has 1 dot.

                                             =1 : ⦁(number of Jordan block: 1)

Here  has one  11 Jordan block. That is, =[2].

그림입니다.

As well, the dot diagram for  has 3 dot, and

 = 5-rank(-) = 5-4 = 1

 = rank() - rank[] = 4-3 =1

 = rank[] - rank[] = 3-2 =1

Thus, the dot diagram for  is the following.

                                       =1 : ⦁ (number of Jordan block: 1)

                                       =1 : ⦁

                                       =1 : ⦁

 has one 33 Jordan block. That is, =.

Hence, the Jordan Canonical form of  is

∴ ==

Doble checked by Sage




 

Chapter 10,  problem 5

Find the Jordan Canonical Form of the given matrix.

 

                             



Sol)

                 그림입니다.

 The matrix  has characteristic polynomial  = .

So A has three distinct eigenvalues .

Here =5 has algebraic multiplicity 1, =1 has algebraic multiplicity 1 and =-3 has algebraic multiplicity 1.


Thus the dot diagram for  has 1 dot.

                                    =1 ; ⦁ (number of Jordan block: 1)

Here  has one 11 Jordan block. That is, =[5].


And also the dot diagram for  has 1 dot.

                                           =1 : ⦁ (number of Jordan block: 1)

Here  has one 11 Jordan block. That is, =[1].


As well, the dot diagram for  has 1 dot, and.

                              =1 : ⦁ (number of Jordan block: 1)

 has one 11 Jordan block. That is, =.


Hence, the Jordan Canonical form of  is

                       ∴ ==


Doble checked by Sage 




Problem 6 Find the Jordan Canonical Form of the given matrix.

                                   

Sol) The matrix   has characteristic polynomial  = .

   So A has two distinct eigenvalues of =2 and =0, each with algebraic multiplicity 2.

그림입니다.
원본 그림의 이름: 선대 10단원 6번.PNG
원본 그림의 크기: 가로 596pixel, 세로 152pixel

그림입니다.
원본 그림의 이름: 선대 10단우너 6번-1.PNG
원본 그림의 크기: 가로 216pixel, 세로 145pixelFor =2,  

 = 4 - rank() = 4-2 = 2

 = rank() - rank[] = 2-2 = 0

Therefore, the dot diagram for  is the following.

       =1 : ⦁  ( Number of Jordan blocks : 1)

       =1 : ⦁ 

그림입니다.
원본 그림의 이름: 선대 10단원 6번-2.PNG
원본 그림의 크기: 가로 211pixel, 세로 143pixel                           So, =



For =0

 = 4 - rank = 4 - 3 = 1

 = rank - rank[] = 3 - 2 = 1

       =1 : ⦁  ( Number of Jordan blocks : 1)

       =1 : ⦁ 

                            So, =

Hence, the Jordan Canonical form of  is

                        ∴ == .


Doble checked by Sage




Problem7. 

Find the Jordan Canonical Form of the given matrix.

 

                

Sol.

The matrix  has characteristic polynomial  = . So A has three distinct eigenvalues .


Here =4 has algebraic multiplicity 1, =2 has algebraic multiplicity 1 and =1 has algebraic multiplicity 3.

Thus the dot diagram for  has 1 dot.

 

   ⦁

Here  has 11 Jordan block. That is, =[4].

And also the dot diagram for  has 1 dot.

 

     ⦁

Here  has 11 Jordan block. That is, =[2].


Now the dot diagram for  has 3 dot, and

 = 5-rank(-) = 5-4 = 1

 = rank() - rank[] = 4-3 =1

 = rank[] - rank[] = 3-2 =1

Thus, the dot diagram for  is the following. (number of Jordan block: 1)

 

 

  =1 : ⦁

    =1 : ⦁

    =1 : ⦁

 has ons 33 Jordan block. That is,    =. Hence, the Jordan Canonical form of  is

                                      ∴ ==                                

   Doble checked by Sage




Problem8. 

Find the Jordan Canonical Form of the given matrix.

 

                         

Sol.

 The matrix  has characteristic polynomial  = . So A has two distinct eigenvalues of =4 and =2, each with alegebraic multiplicity 2.

For  = 4,

 = 4 - rank() = 4-3 = 1

 = rank() - rank[] = 3-2 = 1


Therefore, the dot diagram for  is the following.  ( Number of Jordan blocks : 1)

          =1 : ⦁  (Number of Jordan blocks = 1 )

                =2    :  ⦁

So, =.


For =2,

 = 4 - rank() = 4-2 = 2

 = rank() - rank[] = 2-2 = 0


Therefore, the dot diagram for  is the following. 

          =2 : ⦁⦁ (Number of Jordan blocks = 2 )

So, =.

                Thus, the Jordan Canonical Form of  is =.


Doble checked by Sage




Ch 10  Jordan Canonical Forms (Reference)

 

http://matrix.skku.ac.kr/JCF/

 

http://math1.skku.ac.kr/home/pub/2323/ 

http://matrix.skku.ac.kr/JCF/JordanCanonicalForm-SKKU.html

http://math1.skku.ac.kr/home/pub/656/   

https://www.youtube.com/watch?v=NBLZPcWRHYI 


MT Chapter 10 Jordan Canonical Forms

 

[ 1. Jordan Canonical Form

- Definition - Link

 

[ 2. Generalized  Eigenvectors

- Definition - Link

- Finding a Jordan Canonical Form using Generalized Eigenvectors  - Link

- Finding Generalized Eigenvectors using a Jordan Canonical Form - Link

 

[ 3. Characteristic Polynomial and Minimal Polynomial

- Characteristic Polynomial and Minimal Polynomial of a Jordan form  - Link

- Diagonalization and Minimal Polynomial  - Link

- Cayley-Hamilton theorem- Link

 

[ 4. Applications  ]

- Computing J^k where J is a Jordan block  - Link

- Computing A^k using Jordan Canonical Form - Link

- Computation of e^A using Jordan Canonical Form- Link

- Solving a Linear Ordinal Differential Equation - Link

 


Reference :

1) The algebraic sum of currents in a network of conductors meeting at a point is zero.

2) The directed sum of the electrical potential differences (voltage) around any closed network is zero.

3) Linear Algebra & Genetics. John Gallego, Sunit kambli, Daniel Lee http://web.csulb.edu/~jchang9/m247/m247_sp10_Danial_John_Sunny.pdf

http://www.math.washington.edu/~king/coursedir/m308a01/Projects/m308a01-pdf/kirkham.pdf

4) http://www.prenhall.com/esm/app/ph-linear/leon/html/proj1.html

  https://en.wikipedia.org/wiki/Leslie_matrix

5) Casey Pearson. Matrices in Statics and Mechanics.(2012). http://home2.fvcc.edu/~dhicketh/LinearAlgebra/studentprojects/spring2012/Linear%20Algebra%20Project/Linear%20Algebra%20Project.pdf (2015.11.15.)

6) Image Compression Using Singular Value Decomposition, Ian Cooper and Craig Lorence, December 15, 2006

   http://msemac.redwoods.edu/~darnold/math45/laproj/fall2006/iancraig/SVD_paper.pdf

7) http://www.sciencedirect.com/science/article/pii/0169743987800849

   https://en.wikipedia.org/wiki/Principal_component_analysis

8) 대한전자공학회, http://www.ieek.or.kr/

“Low Complexity Power Allocation Scheme for MIMO Multiple Relay System With Weighted Diagonalization”

9) W.C.Chew, S.Koc, J.M. Song, C.C.Lu, and E. Michielssen / Center for computational electromagnetics / Electromagnetics Laboratory / Department of electrical and Computer Engineering / University of Illinois / Urbana, Il 61801

   http://scholar.ndsl.kr/schDetail.do?cn=NPAP00247997

 

그림입니다. 원본 그림의 이름: mem00000c202726.png 원본 그림의 크기: 가로 220pixel, 세로 82pixel그림입니다. 원본 그림의 이름: Sage-logo.jpg 원본 그림의 크기: 가로 200pixel, 세로 200pixel

 About the Author

 https://www.researchgate.net/profile/Sang_Gu_Lee  

https://scholar.google.com/citations?user=FjOjyHIAAAAJ&hl=en&cstart=0&pagesize=20

http://orcid.org/0000-0002-7408-9648  

http://www.scopus.com/authid/detail.uri?authorId=35292447100  

 http://matrix.skku.ac.kr/sglee/vita/LeeSG.htm  

                         Made by SGLee http://matrix.skku.ac.kr/sglee/