Syllabus

 

ꡐ과λͺ©λͺ…

? ?•?€?˜?™

?™?˜λ²ˆ??/SPAN>

GEDB003-42

?¬μš©μ–Έμ–?/SPAN>

English

??­κ΅¬λ?

ꡐ?‘.κΈ°μ?

?˜κ°•?€??™λΆ€

all

?΄μˆ˜κ΅¬λ? 

ꡐ?‘.κΈ°μ?

?™?/?œκ°„

3?™? / 3?œκ°„

?Έμ?ꡬλ? ?„?„/?™κΈ?/SPAN>

 201*/* ?™κΈ?/P>

κ°•?˜??/SPAN>

κΈ°μ??™λ¬Έκ? 1μΈ?017?51155?‘

?˜?…?œκ°„

?”,λͺ?10:30~11:45

?΄λ‹Ήκ??˜ λͺ…

?΄μƒκ΅?ꡐ?˜

?°λ½μ?(?°κ΅¬??

031-290-7025

E-Mail 

sglee@skku.edu

ꡐ과λͺ© 개?”

We will cover : Vectors, geometric, norm, vector addition, dot product, equality, application of angle between vectors as measure of genetic distance Systems of linear equations and Gauss-Jordan elimination, Matrices, inverses, diagonal, triangular, symmetric, trace, geographical distribution, probability matrices, and application to colour. LT.

Determinants, evaluation by row operations and Laplace expansion, properties, vector cross products, eigenvalues and eigenvectors, Differential equations, system of first order linear equations, applications to population dynamics, linear second order equations. Jordan canonical Forms.

You may refer :

http://matrix.skku.ac.kr/CLAMC/index.html

http://matrix.skku.ac.kr/2011-sage/sage-la/

http://www.youtube.com/watch?v=97qI2yQC5Gs

ꡐ과λͺ© λͺ©ν‘œ

 We will discuss many interesting problems from textbook and other in English. This will be an introduction to linear algebra, including matrix operations, systems of linear equations, vector spaces, subspaces, bases and linear independence, eigenvalues and eigenvectors, diagonalization of matrices, linear transformations, determinants.

 If you have any conflict with it, I would recommend to take other class. All Quiz problems will be given in English.

Linear Algebra with Sage (?™?? κ°•?˜)

??Made by Prof. SGLee at Sungkyunkwan Univ.

SKKU Linear Algebra with Sage

κ°•μ’Œλͺ…

? ?•?€?˜?™

?΄λ‹Ήκ??˜

sglee@skku.edu 

Ch.

주제

section

?΄μš?/SPAN>

 ?™?? κ°•?˜?λ£Œ

0

 

 

Preface

http://youtu.be/CbfJYPCkbm8

Introduction 

of CAS

http://youtu.be/0SQpiNe2LU8

1

벑ν„?/P>

1-1

Vector

http://youtu.be/85kGK6bJLns

1-2

Norm

http://youtu.be/g55dfkmlTHE

1-3

Vector

Equations

http://youtu.be/YB976T1w0kE

2

? ?•?°λ¦½λ°©μ •?

2-1

LSE

http://youtu.be/AAUQvdjQ-qk

2-2

RREF

http://youtu.be/HSm69YigRr4 

2-3

Appl of LSE

http://youtu.be/G790BLDSK5g

3

?‰?¬κ³Ό ?‰?¬λŒ€?˜

3-1

Matrix

http://youtu.be/JdNnHGdJBrQ

3-2

Inverse Matrix

http://youtu.be/yeCUPdRx7Bk

3-3

Elementary

Matrix

http://youtu.be/oQ2m6SSSquc

3-4

Subspace

http://youtu.be/UTTUg6JUFQM

3-5

Solutions Set

http://youtu.be/O0TPCpKW_eY

3-6

Special

Matrices

http://youtu.be/jLh77sZOaM8

3-7

LU-

Factorization

http://youtu.be/lKJPnLCiAVU

3-8

Theorem of

Triangular

matrix

http://youtu.be/UriXEI-xoRk

4

?‰?¬μ‹

4-1

Determinant

http://youtu.be/Vf8LlkKKHgg

http://youtu.be/_3WRlwDUU9Y

4-2

Cofactor

Expansion

http://youtu.be/m6l2my6pSwY

4-3

Cramer's Law

http://youtu.be/m2NkOX7gE50

4-4

Appl of

Determinant

http://youtu.be/KtkOH5M3_Lc

4-5

Eigenvalue &

Eigenvector

http://youtu.be/96Brbkx1cQ4

5

?‰?¬λͺ¨??/P>

5-1

Power Method

http://youtu.be/CLxjkZuNJXw

5-2

Encryption

http://youtu.be/umTIADxsEq8

5-3

Blackout Game

http://youtu.be/_bS33Ifa29s

5-4

Markov Chains

http://youtu.be/156ezier6HQ

5-5

Google Matrix

http://youtu.be/WNUoXLh8i_E

5-6

Project

http://youtu.be/coNq48CW6Pg

6

? ?•λ³€?˜

6-1

Linear

Transformation

http://youtu.be/Yr23NRSpSoM

6-2

Linear Operator

http://youtu.be/12WP-cb6Ymc

6-3

Kernel

http://youtu.be/H-P4lDgruCc 

6-4

Composite 

and Inverse

http://youtu.be/qfAmNsdlPxc

6-5

Computer Graphic

http://youtu.be/VV5zzeYipZs

7

차원κ³?뢀뢄곡κ?

7-1

Basis Dimension

http://youtu.be/172stJmormk 

7-2

Fundamental

Subspaces

http://youtu.be/dWoq2YVsy-g

7-3

Rank Nullity

Theorem

http://youtu.be/8P7cd-Eh328

http://youtu.be/bM-Pze0suqo

Proof of

Rank-Nullity

Theorem

http://youtu.be/f3P4gfDVd8M

7-4

Rank Theorem

http://youtu.be/BKZwJiuEYZE

7-5

Projection

Theorem

http://youtu.be/Rv1rd3u-oYg

Proof of

Schur Theorem

http://youtu.be/lL0VdTStJDM

7-7

Gram-Schmidt

ON Process

http://youtu.be/EBCi1nR7EuE

7-9

Coordinate vectors

http://youtu.be/tdd7gbtCCRg

8

?‰?¬μ˜ ?€κ°?”

8-1

Matrix of LT

http://youtu.be/jfMcPoso6g4

8-2

similarity

http://youtu.be/MnfLcBZsV-I

8-3

OrthoDiag

http://youtu.be/B—ABwoKAN4

8-4

Quadratic Ft

http://youtu.be/lznsULrqJ_0

8-5

Appl of

Quadratic Function

http://youtu.be/cOW9qT64e0g 

8-6

Singular Value

Decomposition

http://youtu.be/7-qG-A8nXmo 

8-7

Complex matrix

http://youtu.be/Ma2er-9LC_g

8-8

Hermitian matrix

http://youtu.be/GLGwj6tzd60

9

?Όλ?벑터곡간

9-1

Vector Spaces

http://youtu.be/beXWYXYtAaI

9-2

Inner product

spaces

http://youtu.be/nIkYF-uvFdA

9-3

Isomorphism

http://youtu.be/Y2lhCID0XS8

10

Jordan ?œμ€€?•

(with Sage)

10-1

Jordan

Canonical Form

http://youtu.be/NBLZPcWRHYI

10-3

Jordan

Canonical Form

with Sage

http://youtu.be/LxY6RcNTEE0

κ°•?˜ 쀑 ?™? 문제 ?€????발?œ ?΄μš?(?™??)

???λ£Œ

 

201*?„?„ *?™κΈ?/SPAN>

 

κ°•μ’Œλͺ…

? ?•?€?˜?™

?΄λ‹Ήκ??˜

?΄μƒκ΅?/SPAN>

 μ£Όμ°¨

?΄μš?/SPAN>

section

?™?? 발?œ ?λ£Œ

1μ£Όμ°¨

Inner product,Orientation

Section 1-1

http://youtu.be/fbCMyh-iDCQ

Section 1-2

http://youtu.be/sEFj_7t_bqc

2μ£Όμ°¨

Vector (λ²???

Section 1-3

http://youtu.be/avVJfeEoeVs

Chapter 1

(Discuss)

http://youtu.be/tys3taO5IHs

Section 2-1

http://youtu.be/N5ltl-bfdvkz

Section 2-2

http://youtu.be/sJeomjbRFmE

3μ£Όμ°¨

LSE

Section 2-3

http://youtu.be/vx_6rTJq5jk

Section 3-1

http://youtu.be/LaAAruKbGyc

Section 3-2

http://youtu.be/-MPszmMNvLE

Section 3-3

http://youtu.be/ceI80eXp6xU

4μ£Όμ°¨

Change of basis, Similar matrices

Section 3-4

http://youtu.be/s7jxVvVAel4

Section 3-5

http://youtu.be/IygHFdWacds

Section 3-6

http://youtu.be/rYBsPkeVhQ0

5μ£Όμ°¨

Determinat

Section 4-1

http://youtu.be/Fne4gaZtE_Q

Section 4-3

http://youtu.be/Ygu4_7I4fGQ

6μ£Όμ°¨

Linear transformations and their matrix representation

Section 6-1

http://www.youtube.com/watch?v=yDUHr2LHBVs

7μ£Όμ°¨

CAS system

Section 6-3

http://youtu.be/7BF0JG7JMJ8 

Section 6-4

http://youtu.be/qppP5y8bBgE

Section 6-5

http://youtu.be/QoEPmoIZVd8 

9μ£Όμ°¨

Dimension and Subspaces

Section 7-1

http://www.youtube.com/watch?v=BHf1AZjYAdQ

Section 7-2

10μ£Όμ°¨

Section 7-3

Section 7-4

Section 7-5

 http://www.youtube.com/watch?v=BC9qeR0JWis

Section 7-6

11μ£Όμ°¨

Review Orthogonal and orthonormal bases

and the Gram-Schmidt process

Section 7-7

http://youtu.be/ZRa-4MnWb48

Section 7-9

http://youtu.be/X9VR_0Xnbcc

12μ£Όμ°¨

Diagonalization

Section 8-1

http://youtu.be/Oy7ZbacWDhk 

Orthogonal matrices,

orthogonal similarity

Section 8-2

http://www.youtube.com/watch?v=00HeZNTN_vc 

http://www.youtube.com/watch?v=7g5Du3_D5PQ

Section 8-3

http://www.youtube.com/watch?v=HSPYrYju1ZY

13μ£Όμ°¨

orthogonal diagonalisability

Section 8-4

 

http://youtu.be/aYTuHkNKbB4

 

Section 8-5

http://www.youtube.com/watch?v=gWEtJYqvMuQ

Section 8-6

 http://www.youtube.com/watch?v=m7u1-XphQ3s

Section 8-7

http://youtu.be/jDViGood6VA

Section 8-8

http://www.youtube.com/watch?v=lEolZQp_55g

http://youtu.be/SJfshBcj_oc

http://youtu.be/Ajos-zIx6pA

14μ£Όμ°¨

Quadratic forms, Positive definite quadratic forms.

Section 8-9

 http://www.youtube.com/watch?v=c0y5DcNQ8gs

General Vector Spaces

Section 9-1

 http://www.youtube.com/watch?v=G3Fek3W9kVg

 

Section 9-2

http://www.youtube.com/watch?v=UuSBrN4-4Fc

 

Chapter 9

http://www.youtube.com/watch?v=tmzbqK3rZfg

http://www.youtube.com/watch?v=Bqablzyb_30

 

15μ£Όμ°¨

Inner product

spaces. Jacobian matrix. Hessian matrix Fourier series

Section 10-1

 

http://youtu.be/9-G3Fd2xOW0

 

 

Chapter 10

http://www.youtube.com/watch?v=adWzUKKmO2k

16μ£Όμ°¨

Chapter 7,8,9 Project Presentation and Final Exam

Project 발?œ

http://youtu.be/cxdj7hDWk08



http://matrix.skku.ac.kr/LinearAlgebra.htm