Linear Algebra (? ????) by SGLee
http://ibook.skku.edu/Viewer/Big-LA
CAS: http://matrix.skku.ac.kr/LA-Lab/
http://matrix.skku.ac.kr/knou-knowls/
http://matrix.skku.ac.kr/2012-LAwithSage/interact/
Sage Reference for Contemporary Linear Algebra
??? ???? (μ± ): http://matrix.skku.ac.kr/CLAMC/index.html
??¬λ?: http://matrix.skku.ac.kr/OCW-MT/index.htm
??¬λ?; http://matrix.skku.ac.kr/MT2010/MT2010.htm
Matrix Analysis: http://matrix.skku.ac.kr/2008-Lecture/mtl/index.html
Numerical LA: http://matrix.skku.ac.kr/nla/index.html
??¬λ?: http://matrix.skku.ac.kr/newMT/index.html
? ????κ³????(μ± ): http://matrix.skku.ac.kr/2008-Lecture/LAA-sglee/index.html
???λͺ¨λΈλ?: http://matrix.skku.ac.kr/2009/2009-MathModeling/index.html
???λͺ¨λΈλ?: http://matrix.skku.ac.kr/2013-Album/2013-MM-Syllubus.htm
??-??κ³?κΈ°λ?(? ????): http://matrix.skku.ac.kr/sglee/macbook/Chapter7.pdf
(??? http://matrix.skku.ac.kr/2009-images/MT-What-is-it-JHLee/MT-What-is-it-JHLee.html
(곡ν??) http://matrix.skku.ac.kr/2013-Sage/EM-Chap-9/EM-Chapter9-sglee.html
(κ°μ²?) http://matrix.skku.ac.kr/K-Math-History/index.htm
λ―Έμ λΆ?: http://matrix.skku.ac.kr/Cal-Book/
[New] ? ???? Interactive ??΅μ?(GeoGebra+Sage+κ°?λ‘+???)
Index |
Contents |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
17 |
|
18 |
19 |
|
20 |
|
21 |
|
22 |
|
23 |
???κ³?°κΈ° Matrix Calculator |
24 |
|
25 |
26 |
|
27 |
28 |
|
29 |
30 |
|
31 |
32 |
|
33 |
|
Syllabus
|
|||
κ΅κ³Όλͺ©λͺ |
? ???? |
??λ²??/SPAN> |
GEDB003-42 |
?¬μ©μΈμ?/SPAN> |
English |
??ꡬλ? |
κ΅?.κΈ°μ? |
?κ°???λΆ |
all |
?΄μꡬλ? |
κ΅?.κΈ°μ? |
??/?κ° |
3?? / 3?κ° |
?Έμ?ꡬλ? ??/?κΈ?/SPAN> |
201*/* ?κΈ?/P> |
κ°???/SPAN> |
κΈ°μ??λ¬Έκ? 1μΈ?017?51155? |
?? ?κ° |
?,λͺ?10:30~11:45 |
?΄λΉκ?? λͺ |
?΄μκ΅?κ΅? |
?°λ½μ?(?°κ΅¬?? |
031-290-7025 |
|
sglee@skku.edu |
||
κ΅κ³Όλͺ© κ°? |
We will cover : Vectors, geometric, norm, vector addition, dot product, equality, application of angle between vectors as measure of genetic distance Systems of linear equations and Gauss-Jordan elimination, Matrices, inverses, diagonal, triangular, symmetric, trace, geographical distribution, probability matrices, and application to colour. LT. Determinants, evaluation by row operations and Laplace expansion, properties, vector cross products, eigenvalues and eigenvectors, Differential equations, system of first order linear equations, applications to population dynamics, linear second order equations. Jordan canonical Forms. You may refer : http://matrix.skku.ac.kr/CLAMC/index.html http://matrix.skku.ac.kr/2011-sage/sage-la/ http://www.youtube.com/watch?v=97qI2yQC5Gs |
||
κ΅κ³Όλͺ© λͺ©ν |
We will discuss many interesting problems from textbook and other in English. This will be an introduction to linear algebra, including matrix operations, systems of linear equations, vector spaces, subspaces, bases and linear independence, eigenvalues and eigenvectors, diagonalization of matrices, linear transformations, determinants. If you have any conflict with it, I would recommend to take other class. All Quiz problems will be given in English. |
Linear Algebra with Sage (??? κ°?)
??Made by Prof. SGLee at Sungkyunkwan Univ.
SKKU Linear Algebra with Sage |
|||||||
κ°μ’λͺ |
? ???? |
?΄λΉκ?? |
sglee@skku.edu |
||||
Ch. |
μ£Όμ |
section |
?΄μ?/SPAN> |
??? κ°??λ£ |
|||
0 |
|
|
Preface |
||||
Introduction of CAS |
|||||||
1 |
벑ν?/P> |
1-1 |
Vector |
||||
1-2 |
Norm |
||||||
1-3 |
Vector Equations |
||||||
2 |
? ??°λ¦½λ°©μ ? |
2-1 |
LSE |
||||
2-2 |
RREF |
||||||
2-3 |
Appl of LSE |
||||||
3 |
??¬κ³Ό ??¬λ? |
3-1 |
Matrix |
||||
3-2 |
Inverse Matrix |
||||||
3-3 |
Elementary Matrix |
||||||
3-4 |
Subspace |
||||||
3-5 |
Solutions Set |
||||||
3-6 |
Special Matrices |
||||||
3-7 |
LU- Factorization |
||||||
3-8 |
Theorem of Triangular matrix |
||||||
4 |
??¬μ |
4-1 |
Determinant |
||||
4-2 |
Cofactor Expansion |
||||||
4-3 |
Cramer's Law |
||||||
4-4 |
Appl of Determinant |
||||||
4-5 |
Eigenvalue & Eigenvector |
||||||
5 |
??¬λͺ¨??/P> |
5-1 |
Power Method |
||||
5-2 |
Encryption |
||||||
5-3 |
Blackout Game |
||||||
5-4 |
Markov Chains |
||||||
5-5 |
Google Matrix |
||||||
5-6 |
Project |
||||||
6 |
? ?λ³? |
6-1 |
Linear Transformation |
||||
6-2 |
Linear Operator |
||||||
6-3 |
Kernel |
||||||
6-4 |
Composite and Inverse |
||||||
6-5 |
Computer Graphic |
||||||
7 |
μ°¨μκ³?λΆλΆκ³΅κ? |
7-1 |
Basis Dimension |
||||
7-2 |
Fundamental Subspaces |
||||||
7-3 |
Rank Nullity Theorem |
||||||
Proof of Rank-Nullity Theorem |
|||||||
7-4 |
Rank Theorem |
||||||
7-5 |
Projection Theorem |
||||||
Proof of Schur Theorem |
|||||||
7-7 |
Gram-Schmidt ON Process |
||||||
7-9 |
Coordinate vectors |
||||||
8 |
??¬μ ?κ°? |
8-1 |
Matrix of LT |
||||
8-2 |
similarity |
||||||
8-3 |
OrthoDiag |
||||||
8-4 |
Quadratic Ft |
||||||
8-5 |
Appl of Quadratic Function |
||||||
8-6 |
Singular Value Decomposition |
||||||
8-7 |
Complex matrix |
||||||
8-8 |
Hermitian matrix |
||||||
9 |
?Όλ?벑ν°κ³΅κ° |
9-1 |
Vector Spaces |
||||
9-2 |
Inner product spaces |
||||||
9-3 |
Isomorphism |
||||||
10 |
Jordan ?μ€? (with Sage) |
10-1 |
Jordan Canonical Form |
||||
10-3 |
Jordan Canonical Form with Sage |
κ°? μ€ ?? λ¬Έμ ?????λ°? ?΄μ?(???)
???λ£
201*?? *?κΈ?/SPAN>
|
||||||||
κ°μ’λͺ |
? ???? |
?΄λΉκ?? |
?΄μκ΅?/SPAN> |
|||||
μ£Όμ°¨ |
?΄μ?/SPAN> |
section |
??? λ°? ?λ£ |
|||||
1μ£Όμ°¨ |
Inner product,Orientation |
Section 1-1 |
||||||
Section 1-2 |
||||||||
2μ£Όμ°¨ |
Vector (λ²??? |
Section 1-3 |
||||||
Chapter 1 (Discuss) |
||||||||
Section 2-1 |
||||||||
Section 2-2 |
||||||||
3μ£Όμ°¨ |
LSE |
Section 2-3 |
||||||
Section 3-1 |
||||||||
Section 3-2 |
||||||||
Section 3-3 |
||||||||
4μ£Όμ°¨ |
Change of basis, Similar matrices |
Section 3-4 |
||||||
Section 3-5 |
||||||||
Section 3-6 |
||||||||
5μ£Όμ°¨ |
Determinat |
Section 4-1 |
||||||
Section 4-3 |
||||||||
6μ£Όμ°¨ |
Linear transformations and their matrix representation |
Section 6-1 |
||||||
7μ£Όμ°¨ |
CAS system |
Section 6-3 |
||||||
Section 6-4 |
||||||||
Section 6-5 |
||||||||
9μ£Όμ°¨ |
Dimension and Subspaces |
Section 7-1 |
||||||
Section 7-2 |
||||||||
10μ£Όμ°¨ |
Section 7-3 |
|||||||
Section 7-4 |
||||||||
Section 7-5 |
||||||||
Section 7-6 |
||||||||
11μ£Όμ°¨ |
Review Orthogonal and orthonormal bases and the Gram-Schmidt process |
Section 7-7 |
||||||
Section 7-9 |
||||||||
12μ£Όμ°¨ |
Diagonalization |
Section 8-1 |
||||||
Orthogonal matrices, orthogonal similarity |
Section 8-2 |
|||||||
Section 8-3 |
||||||||
13μ£Όμ°¨ |
orthogonal diagonalisability |
Section 8-4 |
|
|||||
Section 8-5 |
||||||||
Section 8-6 |
||||||||
Section 8-7 |
||||||||
Section 8-8 |
||||||||
14μ£Όμ°¨ |
Quadratic forms, Positive definite quadratic forms. |
Section 8-9 |
||||||
General Vector Spaces |
Section 9-1 |
http://www.youtube.com/watch?v=G3Fek3W9kVg
|
||||||
Section 9-2 |
http://www.youtube.com/watch?v=UuSBrN4-4Fc
|
|||||||
Chapter 9 |
http://www.youtube.com/watch?v=tmzbqK3rZfg http://www.youtube.com/watch?v=Bqablzyb_30
|
|||||||
15μ£Όμ°¨ |
Inner product spaces. Jacobian matrix. Hessian matrix Fourier series |
Section 10-1 |
|
|||||
Chapter 10 |
||||||||
16μ£Όμ°¨ |
Chapter 7,8,9 Project Presentation and Final Exam |
Project λ°? |
http://matrix.skku.ac.kr/LinearAlgebra.htm