3.3 The Chain Rule and Inverse Functions

1-3. Find the differential .


1.

 


2.

 


3.

 


4-5. Find of these functions.


4.

 

     Therefore,


5.

 


6. Differentiate .

 

   

                       


7. Find where

 

      

     Using induction on , we get

     .


8. Find for an integer if .

   

      Therefore, using induction

.


9. Show that the curves and are orthogonal.

 

      At a point of intersection,

      .

      Thus, the intersections of the two curves are and .

      At , one derivative is not defined.

      At ,

      

      Therefore, the curves are orthogonal.


10-13. Find


10.

  

      


11.


 

      

      

12.

 

      


13.

  

  

  

  

  It is appear that the denominator terms is , and numerator is .

  Therefore


14. Find the th derivative of .

 

      

      

       

       

      


15. Prove if , then satisfies the identity .

 

      

      

         

     Therefore .

    


16. Use differentiation to show that

   

 

      

      

      

     

     Therefore


17-20.  Find of the following expressions.


17.

 

 

18.

 



19.

http://matrix.skku.ac.kr/cal-lab/cal-3-2-12.html 

1/2*(2*sqrt(x)*cos(x)/sin(x) + log(sin(x))/sqrt(x))*sin(x)^sqrt


 20.

http://matrix.skku.ac.kr/cal-lab/cal-3-2-13.html

 

(log(arccos(x))/(x^2+1)-arctan(x)/(sqrt(-x^2+1)*arccos(x)))*arccos(x)^arctan(x)



21. Find if .

http://matrix.skku.ac.kr/cal-lab/cal-3-2-14.html

 

(log(x)/(x^2 + 1) + arctan(x)/x)*x^arctan(x)

(log(x)/(x^2 + 1) + arctan(x)/x)^2*x^arctan(x) - (2*x*log(x)/(x^2 + 1)^2 + arctan(x)/x^2 - 2/((x^2 + 1)*x))*x^arctan(x)


22-23. Find and of the following functions.


22. .

 

      

      

     .

     

23. .

 

      

      

          

          


24. Given , show that it satisfies the following identity.

.

    Using this identity, find .

      

      

      

            

      

               

      

                 

                 

             

                 

             

      .

      Therefore, .

                 ,

                       .

      Therefore, for is even, for is odd.

 

25. Given , show that .

 Since so is continuous on .

      And ,  

        .

      Therefore, .


26-28. Find of the following expressions.

26. .

 

      

      .


27. .

 


28. .

 


29. If , where and are three times differentiable, find expressions for and .

 

      .

      .

      

           .

         .


30. Given , find at the point .

   .

   .

   .

   .

   .

   Therefore,.


31. Use differentiation to show that for all .

  is no differentiation for all (Because .


32. Find an equation of the tangent line to the curve at for an arbitrary value .

  , so we have to find the tangent line at

      (Because ).


33. Establish the following derivative rules.

    (a)

 

    (b)

 

  

    (c)

 


34-46. Prove the following identities.


34.

 


35.

 


36.

 


37.

 


38.

 


39.

 


40.

 Use athematical induction, If , trivial.

      Let

      

       So,


41.

 


42.

 Let . Then , so .

      .

      Note that , but because .

      Thus, .

      So, .


43.

 Let . Then , so .

      .

     Note that , but because .

     Thus, for   So .


44.

 Let . Then

      .


45.

 Let . Then , .

      Since and ,  we have

      , so  .


46.

 Let . Then

      



47-50. Find


47.

  

      


48.

 

49.

 

      

      Therefore,


50.

 

     

     It is appear that the denominator terms is , and numerator is .

     Therefore,


51. Find the th derivative of .

   

      


52. Prove if , then satisfies the identity .

 

           

      Therefore,


53-54. Find and of the following.


53.

 

     

54.

 

      


55. Given , show that it satisfies the following identity.

    

    Using this identity, find .

 

      

      

      


      Therefore, .


      


      Therefore, for is even, for is odd.

 

56. Given , show that .

 Since so is continuous on .

      And   

             

      Therefore,


57. If , where and are three times differentiable, find expressions for and .

 


58. Given , find at the point .

 

      

      

      

      

      Therefore, .