4.3 The Limit of Indeterminate Forms and L¡¯Hospital¡¯s Rule
1-11. Evaluate the limits of given indeterminate forms.
1. .
by L'Hospital Rule, applied twice.
2. .
3. .
By L'Hospital Rule, .
4.
5. .
By L'Hospital Rule
6. .
http://matrix.skku.ac.kr/cal-lab/cal-4-3-6.html
Ans: 2
7. .
8. .
By L'Hospital Rule
.
9. .
10. .
http://matrix.skku.ac.kr/cal-lab/cal-4-3-10.html
.
11. .
.
12. Let . Use L'Hospital's Theorem to show that .
, since is constant and the denominator grows without bound.
13. For what values of and is the following equation correct?
By L'Hospital Rule for a form of type
and we may take a to be any value.
14. .
by L'Hospital Rule for a form of type
15. .
16-17. Find the following limit.
16. .
(by L'Hospita Rule) or .
17. .
(by L'Hospital Theorem)
or
18-27. Find the limit by using L'Hospital's rule. If you cannot apply L'Hospital's rule, explain why and then find the limits by another method.
18.
, limit does not exists.
19. .
20. .
Apply L'Hospital's rule,
21. .
http://matrix.skku.ac.kr/cal-lab/cal-4-3-19.html
22. .
23. .
24. .
does not exist.
25. .
26. .
http://matrix.skku.ac.kr/cal-lab/cal-4-3-24.html (changed)
0
27. .
28. The function is defined by
and .
Answer the following questions.
(a) Find .
(b) Does exist?
(a)
(b)
does not exist.
29. Let be a continuous function with and .
Find .
.
30. Let be a angle of a sector of a circle. Find where and are the area of the segment between the chord and the area of the triangle respectively.
,