Calculus-Sec-12-3-Solution


  12.3     Arc Length and Curvature                     by SGLee - HSKim - JHLee

 

 

1-5. Find the length of the curve.

 

1. 

 

     .

     .

     .

 







 2. 

           http://matrix.skku.ac.kr/cal-lab/cal-13-3-2.html 

 

 







3. 

 

 

     .

     .

     .

 




 4. 

           http://matrix.skku.ac.kr/cal-lab/cal-13-3-4.html 

 

 




5. 

 

 

      ,

      ,

      .

 




6-8. Reparametrize the curve with respect to arc length measured from the point where  in the direction of increasing .

 

6. 

 

 

      Since .

      Thus , this implies .

      Substituting  in , we have .

 










7. 

 

 

      Since .

      Thus    .

      Substituting  in , we have .

 




 8. 

           http://matrix.skku.ac.kr/cal-lab/cal-13-3-8.html 








9-10. Find the unit tangent , unit normal vectors  and the curvature .

 

9. 

 

 

      .

      Hence .

      .

       Hence .

      .

 




  10. 




11-13. Use Theorem 7 to find the curvature.

 

11. 

 

 

      ,

      ,

      .




 12. 

            http://matrix.skku.ac.kr/cal-lab/cal-13-3-12.html 

 




13. 

 

      ,

      .

      .

 




14. Find the curvature of  at the point .

 

 

      ,

      ,

           ,

      ,

      

                  ,

      .    <-- k(0)=sqrt(2)/5

 




15. Find the curvature of  at the point .

 

 

       ,

      ,

      ,

      .

 




16-18. Use Formula 6 to find the curvature.

 

16. 

 

 

      ,

      .    <-- 분자가 2

 




17. 

 

      ,

      .   <-- 분자가 abs(sin x + cos x)

 




18. 

 

      ,

      .




 19-20. Find the vectors  and  at the given point, and plot at some point.

19. 

     http://matrix.skku.ac.kr/cal-lab/cal-13-3-19.html 

 

 







20. 

     http://matrix.skku.ac.kr/cal-lab/cal-13-3-20.html 

 







21-22. Find equations of the normal plane and osculating plane of the curve at the given point, and plot the graphs.

 

21. 

     http://matrix.skku.ac.kr/cal-lab/cal-13-3-21.html

 

 










22. 

     http://matrix.skku.ac.kr/cal-lab/cal-13-3-22.html 

 

 










23. At what point on the curve  is the tangent plane parallel to the plane .

           http://matrix.skku.ac.kr/cal-lab/cal-13-3-23.html 

 

 




24. The curvature at a point  of a curve is defined as ,

     when  is the angle of inclination of the tangent line at , as shown in the figure.

    Thus, the curvature is the absolute value of the rate of change of  with respect to arc length.

    It can be regarded as a measure of the rate of change of direction of the curve ar  

    and will be studied in greater detail in Chapter 12.

    (a) For a parametric curve  derive the formula

          .

       where the dots indicate derivatives with respect to , that is, . [Hint: Use   and Equation  to find . Then use the Chain Rule to find .]

    (b) For a curve  as the parametric curve , show that the formula in part (a) becomes

         .

 

 

     (a) Here ,

         , and

        .

        Thus .

   (b) Here .

        By applying the result of (a) to this case, we obtain that 

        .

25. (a) Show that the curvature at each point of a straight line is .

     (b) Show that the curvature at each point of a circle of radius  is .

 

 

     (a) For a straight line, we parametrize . Since  is a straight line,

          is a constant, and hence  is zero. By #30-(b), we have .

     (b) . Then,

          and . By problem 30 (a), we have .

                                                       Back to Part II