¿ë¾î»çÀü
[
A B C
D E F
G H I
J K L
M N O
P Q R
S T U
V W X
Y Z ]
- adjacent (ÀÎÁ¢)
- µÎ °³ÀÇ ²ÀÁöÁ¡µéÀÌ ÀÌ¿ôÇÏ°í ÀÖ´Ù´Â °ÍÀº ±×°ÍµéÀÌ º¯À¸·Î ¿¬°áµÇ¾îÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù.
µÎ °³ÀÇ º¯µéÀÌ ÀÌ¿ôÇÏ°í ÀÖ´Ù´Â °ÍÀº ±×°ÍµéÀÌ ÇÑ ³¡Á¡À» °øÀ¯ÇÏ°í ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù.
- arc (À¯Ç⺯)
- ¹æÇâÀÌ ÀÖ´Â º¯À» ¸»ÇÑ´Ù.
[ÂüÁ¶: graph].
- articulation point (Àý´ÜÁ¡)
- [ÂüÁ¶: cut vertices].
- bipartite (À̺Ð)
- ¾î¶² ±×·¡ÇÁ°¡ bipartite¶ó´Â °ÍÀº ±×°ÍÀÇ °¢ º¯ÀÌ ÇÑ ³¡Á¡Àº U¿¡ ´Ù¸¥ ³¡Á¡Àº V¿¡ °®µµ·Ï ±×°ÍÀÇ ²ÀÁöÁ¡µéÀÇ ÁýÇÕÀÌ ¿ø¼Ò¸¦ °øÀ¯ÇÏÁö ¾Ê´Â µÎ °³ÀÇ ÁýÇÕ U¿Í V·Î ÀÌºÐµÉ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. bipartite graph¸¦ À̺б׷¡ÇÁ¶ó ºÎ¸£°í (U, V)¸¦ ±×°ÍÀÇ bipartition(À̺РºÐÇÒ)À̶ó ºÎ¸¥´Ù. À̺Р±×·¡ÇÁ°¡ complete bipartite graph (¿ÏÀü À̺Р±×·¡ÇÁ)¶ó´Â °ÍÀº ±×°ÍÀÇ À̺РºÐÇÒÀÌ (U,V)ÀÏ ¶§, UÀÇ °¢ ²ÀÁöÁ¡µéÀÌ VÀÇ ¸ðµç ²ÀÁöÁ¡µé°ú ÀÌ¿ôÇÏ°í ÀÖÀ½À» ÀǹÌÇÑ´Ù. U°¡ m°³ÀÇ ¿ø¼Ò¸¦ V°¡ n°³ÀÇ ¿ø¼Ò¸¦ °¡Áö°í ÀÖ´Â ¿ÏÀü À̺Р±×·¡ÇÁ¸¦ Km,nÀ¸·Î Ç¥½ÃÇÑ´Ù.
K3,3´Â ¿·ÀÇ ±×¸²°ú °°´Ù.
[ÂüÁ¶: complete
graph ¹× cut vertices].
- chromatic number (Âø»ö¼ö)
- ±×·¡ÇÁÀÇ Âø»ö¼ö¶õ ±×°ÍÀÇ ²ÀÁöÁ¡µéÀ» ¼·Î ÀÎÁ¢(adjacent)ÇÏ´Â °ÍµéÀº ´Ù¸¥ »öÀ» °®µµ·Ï Ä¥ÇÒ ¶§ ÇÊ¿äÇÑ »öÀÇ ¼ö Áß ÃÖ¼Ò°ªÀ» ÀǹÌÇÑ´Ù. ¿¹¸¦ µé¾î ¿·ÀÇ ±×·¡ÇÁÀÇ Âø»ö¼ö´Â 3ÀÌ´Ù.
Áöµµ¿¡ ´ëÇÏ¿©¼µµ ÀÌ Âø»ö¼öÀÇ °³³äÀÌ µµÀ﵃ ¼ö Àִµ¥, Áöµµ¸¦ ±×¸± ¶§ ±¹°æÀ» Á¢ÇÏ°í ÀÖ´Â ³ª¶ó´Â ´Ù¸¥ »öÀ» Ä¥Çϵµ·Ï ÇÏ´Âchromatic number (Âø»ö¼ö)
µ¥ ÇÊ¿äÇÑ ÃÖ¼Ò»ö±ò¼ö¸¦ ÀǹÌÇÑ´Ù.
[ÂüÁ¶: Four Color
Theorem]
- circuit (ȸ·Î)
- ȸ·Î¶õ ´ÝÈù path (°æ·Î)ÀÌ´Ù.
(µû¶ó¼ loop (°í¸®) ¶õ ±æÀÌ°¡
1ÀΠȸ·ÎÀÌ´Ù).
- closed (´ÝÇôÁø)
- closed walk (´ÝÇôÁø ¿öÅ©)
- ´ÝÇôÁø ¿öÅ©¶õ ½ÃÀÛÁ¡°ú Á¾ÂøÁ¡ÀÌ °°Àº ¿öÅ©(walk)¸¦ ¸»ÇÑ´Ù.
´ÝÇôÁø Æ®·¹ÀÏ(closed trail)À̶õ ½ÃÀÛÁ¡°ú Á¾ÂøÁ¡ÀÌ °°Àº Æ®·¹ÀÏ(trail)À» ¸»ÇÑ´Ù.
[ÂüÁ¶: walk ¹× trail].
- complete graph (¿ÏÀü±×·¡ÇÁ)
- ¾î¶² µÎ ²ÀÁöÁ¡µµ ÀÌ¿ôÇÏ´Â ´Ü¼ø ±×·¡ÇÁ(simple graph)¸¦ ¿ÏÀü±×·¡ÇÁ¶ó Çϸç, n°³ÀÇ ²ÀÁöÁ¡À» °¡Áö´Â ¿ÏÀü ±×·¡ÇÁ´Â KnÀ¸·Î ³ªÅ¸³½´Ù. ²ÀÁöÁ¡ÀÇ ¼ö°¡ 1, 2, 3, 4, 5°³ÀÎ ¿ÏÀü ±×·¡ÇÁµéÀº ´ÙÀ½°ú °°´Ù:
- component (¼ººÐ)
- [ÂüÁ¶: connected (¿¬°áµÈ)].
- connected (¿¬°áµÈ)
- ¾î¶² ±×·¡ÇÁ°¡ ¿¬°áµÇ¾î ÀÖ´Ù´Â °ÍÀº ¾î¶² µÎ °³ÀÇ ²ÀÁöÁ¡µµ ±×°ÍµéÀ» ¾ç³¡Á¡À¸·Î ÇÏ´Â °æ·Î(path)°¡ Á¸ÀçÇÔÀ» ÀǹÌÇÑ´Ù. ¿¬°áµÇ¾î ÀÖÁö ¾ÊÀº ±×·¡ÇÁ´Â µÎ °³ ÀÌ»óÀÇ
¿¬°áµÈ ¼ººÐ(component) ¶Ç´Â ¼·Î °øÅë ºÎºÐÀÌ ¾ø´Â µÎ °³ ÀÌ»óÀÇ ¿¬°áµÈ ºÎºÐ±×·¡ÇÁ(subgraph)·Î ³ª´µ¾î ÀÖ´Ù. ¿¹¸¦ µé¾î ¿·ÀÇ ±×·¡ÇÁ´Â 3°³ÀÇ ¿¬°áµÈ ¼ººÐµé·Î ÀÌ·ç¾îÁ® ÀÖ´Ù.
- cut vertex (Àý´ÜÁ¡)
- ¾î¶² ±×·¡ÇÁÀÇ Àý´ÜÁ¡À̶õ ±×°ÍÀÌ ±× ±×·¡ÇÁ·ÎºÎÅÍ Á¦°ÅµÇ¾úÀ» ¶§ (²ÀÁöÁ¡ÀÌ ±×·¡ÇÁ¿¡¼ Á¦°ÅµÈ´Ù´Â °ÍÀº ²ÀÁöÁ¡°ú ±×°Í¿¡ ÀÔ»çÇÏ´Â(incident) º¯µéÀ» Áö¿î´Ù´Â °ÍÀ» ÀǹÌ) »ý±â´Â ±×·¡ÇÁÀÇ
¼ººÐ(component)ÀÇ ¼ö°¡ ¿ø·¡º¸´Ù Àû¾îµµ Çϳª ´õ ´Ã¾î³ª°Ô µÇ´Â ²ÀÁöÁ¡À» ¸»ÇÑ´Ù.
[ÂüÁ¶: connected (¿¬°áµÈ)].
- cycle (ȸ·Î)
- ȸ·Î´Â ½ÃÀÛÁ¡°ú Á¾ÂøÁ¡ ¿Ü¿¡´Â ¾î¶² ²ÀÁöÁ¡µµ ¹Ýº¹µÇÁö ¾Ê´Â ´ÝÇôÁø Æ®·¹ÀÏ(closed trail)À» ÀǹÌÇÑ´Ù.
- degree (Â÷¼ö)
- ±×·¡ÇÁ¿¡¼ ²ÀÁöÁ¡ÀÇ Â÷¼ö¶õ ±× ²ÀÁöÁ¡À» ³¡Á¡À¸·Î °¡Áö´Â º¯ÀÇ ¼ö¸¦ ÀǹÌÇÑ´Ù. ÀÌ ¶§ °í¸®(loop)´Â µÎ ¹ø ¼¼¾î ÁØ´Ù. valence¶ó°íµµ ÇÑ´Ù. ¿¹¸¦ µé¾î, ÀÌ ±×·¡ÇÁ¿¡¼´Â ¸ðµç ²ÀÁöÁ¡µéÀÌ Â÷¼ö¸¦ 3À¸·Î °®´Â´Ù. À¯Çâ±×·¡ÇÁ(digraph)
¿¡¼´Â Â÷¼öÀÇ °³³äÀÌ ³»Â÷¼ö(in-degree)¿Í ¿ÜÂ÷¼ö(out-degree) ·Î ³ª´µ¾î Áø´Ù. (°¢ ²ÀÁöÁ¡ÀÇ ³»Â÷¼ö¿Í ¿ÜÂ÷¼ö¸¦ ¸ðµÎ ´õÇÏ¸é ±× À¯Çâ±×·¡ÇÁÀÇ ¹æÇâÀ» ¹«½ÃÇÏ¿© »ý±â´Â ±×·¡ÇÁÀÇ °¢ ²ÀÁöÁ¡ÀÇ Â÷¼ö¿Í °°´Ù.)
- digraph (À¯Çâ±×·¡ÇÁ)
- À¯Çâ±×·¡ÇÁ¶õ ±×°ÍÀÇ °¢ º¯ÀÌ ¹æÇâÀ» °®°í ÀÖ´Â
±×·¡ÇÁ¸¦ ÀǹÌÇÑ´Ù. Á» ´õ Á¤È®È÷ Á¤ÀÇÇϸé À¯Çâ±×·¡ÇÁ¶õ V¶ó´Â À¯ÇÑ ÁýÇÕ°ú ¿ø¼ÒµéÀÌ VÀÇ ¿ø¼Òµé·Î ÀÌ·ç¾îÁø ¼ø¼½ÖµéÀÎ ÁýÇÕ A·Î ÀÌ·ç¾îÁø ¼ø¼½Ö (V,A)¸¦ ÀǹÌÇÑ´Ù. VÀÇ ¿ø¼ÒµéÀ» ²ÀÁöÁ¡(vertex)À̶ó ºÎ¸£°í AÀÇ ¿ø¼ÒµéÀ» À¯Ç⺯(arc)À̶ó°í ºÎ¸¥´Ù. À¯Ç⺯ (a,b)ÀÌ ÁÖ¾îÁ³À» ¶§ a¸¦ ±× À¯Ç⺯ÀÇ ½ÃÀÛÁ¡(initial vertex), b¸¦ Á¾ÂøÁ¡(terminal vertex)À̶ó°í ºÎ¸¥´Ù.
- directed graph (À¯Çâ±×·¡ÇÁ)
- [ÂüÁ¶: digraph]
- edge (º¯)
- [ÂüÁ¶: graph]
- Four Color Theorem (4»ö ¹®Á¦)
- ¸ðµç planar (Æò¸é) graph ÀÇ
chromatics number (Âø»ö¼ö) °¡ 4ÀÌÇ϶ó°í ÁÖÀåÇÏ´Â ¹®Á¦ÀÌ´Ù.
- graph
- ½±°Ô À̾߱âÇÏ¸é º¯(edge)À̶ó°í ºÒ¸®´Â °Íµé¿¡ ÀÇÇÏ¿© ¿¬°áµÈ ²ÀÁöÁ¡µéÀÇ À¯ÇÑ ÁýÇÕÀÌ´Ù. Á» ´õ Á¤È®È÷ Á¤ÀÇÇϸé, ´Ü¼ø ±×·¡ÇÁ(simple graph)¶õ V¶ó´Â ²ÀÁöÁ¡ÀÇ ÁýÇÕ°ú VÀÇ ¼·Î ´Ù¸¥ µÎ ¿ø¼Ò·Î ÀÌ·ç¾îÁø ÁýÇÕµéÀÇ ÁýÇÕ E·Î ÀÌ·ç¾îÁø ¼ø¼½Ö (V,E)¸¦ ÀǹÌÇÑ´Ù.
¸ðµç ±×·¡ÇÁ°¡ ´Ù ´Ü¼ø ±×·¡ÇÁ´Â ¾Æ´Ï´Ù. ¶§¶§·Î µÎ °³ÀÇ ²ÀÁöÁ¡µéÀÌ ¿©·¯ °³ÀÇ º¯µé(multiple edges)·Î ¿¬°áµÉ ¼öµµ ÀÖ°í, ÇÑ ²ÀÁöÁ¡ÀÌ ÀÚ±â ÀڽŰú °í¸®(loop)¶ó´Â º¯¿¡ ÀÇÇÏ¿© ¿¬°áµÉ ¼öµµ ÀÖ´Ù. °æ¿ì¿¡ µû¶ó¼ ±×·¡ÇÁ¸¦ multigraph (¸ÖƼ±×·¡ÇÁ)·Î ´Ü¼ø ±×·¡ÇÁ¸¦ ±×·¡ÇÁ(graph)·Î ºÎ¸¦ ¶§µµ ÀÖ´Ù. ±×·¡ÇÁÀÇ °¢ º¯¿¡ ¹æÇâÀ» ÁÙ ¼ö Àִµ¥ ÀÌ·¸°Ô ÇÏ¿© »ý±ä ±×·¡ÇÁ¸¦ À¯Çâ±×·¡ÇÁ(digraph ¶Ç´Â directed graph)¶ó°í ºÎ¸¥´Ù.
- in-degree (³»Â÷¼ö)
- ¾î¶² ²ÀÁöÁ¡ vÀÇ ³»Â÷¼ö¶õ v¸¦ Á¾ÂøÁ¡À¸·Î °¡Áö´Â À¯Ç⺯(arc)ÀÇ °³¼ö¸¦ ¸»ÇÑ´Ù.
[ÂüÁ¶: digraph¿Í degree]
- initial vertex (½ÃÀÛÁ¡)
-
[ÂüÁ¶: digraph]
- isolated (ºÐ¸®µÈ)
- Â÷¼ö (degree)°¡ 0ÀÎ ²ÀÁöÁ¡, Áï º¯ÀÇ ³¡µµ ¾Æ´Ñ ²ÀÁöÁ¡À» ºÐ¸®µÇ¾ú´Ù°í ÇÑ´Ù.
- Kuratowski's Theorem (Á¤¸®)
- ±×·¡ÇÁ°¡ Æò¸é±×·¡ÇÁ°¡ ¾Æ´Ï¶ó´Â °Í°ú ±×°ÍÀÌ K3,3 ¶Ç´Â K5¿Í µ¿»óÀÎ(homeomorphic) ºÎºÐ±×·¡ÇÁ¸¦ Æ÷ÇÔÇÏ´Â °ÍÀº ¼·Î µ¿Ä¡ÀÌ´Ù.
- length (±æÀÌ)
- [ÂüÁ¶: °æ·Î(path)ÀÇ ±æÀÌ path].
- loop (°í¸®)
- °í¸®¶õ ¾ç³¡Á¡ÀÌ °°Àº º¯À» ÀǹÌÇÑ´Ù.
[ÂüÁ¶: degree(Â÷¼ö)¿¡ ´ëÇÑ ¼³¸íÁß °í¸®¸¦ 3°³ °¡Áø ±×·¡ÇÁ¿¡ ´ëÇÑ ¿¹¸¦ º¸½Ã¿À].
- multigraph (¸ÖƼ±×·¡ÇÁ)
- ½±°Ô À̾߱âÇÏ¸é ¸ÖƼ±×·¡ÇÁ´Â µÎ °³ÀÇ ²ÀÁöÁ¡»çÀÌ¿¡ ¿©·¯°³ÀÇ º¯ÀÌ ÀÖ´Â ±×·¡ÇÁ¸¦ ÀǹÌÇÑ´Ù. Á»´õ Á¤È®ÇÏ°Ô Á¤ÀÇÇϸé, ¸ÖƼ±×·¡ÇÁ´Â V¶ó°í ÇÏ´Â ²ÀÁöÁ¡µéÀÇ ÁýÇÕ°ú º¯µéÀÇ ÁýÇÕÀÎ E, ±×¸®°í E·ÎºÎÅÍ V¿¡ ÀÖ´Â ²ÀÁöÁ¡µéÀÇ ¼ø¼½ÖÀÇ ÁýÇÕ({{u,v}|u,v in V; uv })À¸·ÎÀÇ ÇÔ¼ö f·Î ÀÌ·ç¾îÁ® ÀÖ´Ù. ¿©±â¿¡¼ ÇÔ¼ö f´Â º¯ÀÇ ¾ç³¡Á¡À» Á¦½ÃÇÑ´Ù.
¸¸¾à, µÎ °³ÀÇ º¯ r°ú sÀÇ ÇÔ¼ö°ªÀÌ °°´Ù¸é, Áï f(r)=f(s)À̸é, ¿ì¸®´Â r°ú s´Â ÆòÇàÇÏ´Ù¶ó°í Çϰųª multiple edges¶ó°í ÇÑ´Ù.
[ÂüÁ¶: graph¿Í pseudograph]
- multiple edge (´ÙÁߺ¯)
- [ÂüÁ¶: multigraph (´ÙÁß±×·¡ÇÁ)]
- node (³ëµå)
- vertex (²ÀÁöÁ¡)°ú ƒˆÀº ¸»ÀÌ´Ù.
[ÂüÁ¶: graph]
- out-degree (¿ÜÂ÷¼ö)
- ¾î¶² ²ÀÁöÁ¡vÀÇ ¿ÜÂ÷¼ö¶õ ½ÃÀÛÁ¡À» v·Î ÇÏ´Â À¯Ç⺯(arc)ÀÇ °³¼ö¸¦ ¸»ÇÑ´Ù.
[ÂüÁ¶: digraph (À¯Çâ±×·¡ÇÁ) ¿Í
- parallel edge (ÆòÇຯ)
- [ÂüÁ¶: multigraph].
- path, walk, trail, cycle (Çѱ¹ °í±³ ±³°ú¼¿¡¼´Â °æ·Î=trail ·Î Á¤ÀÇÇÑ´Ù)
-
-
- A trail is a special type of walk, which is stricter in the transition of edges than a walk. A trail is allowed to traverse only once for each edge. However, a trail is still allowed to traverse multiple times for the same vertex.
-
- A path is a walk with no repeated vertexes, which is stricter than a trail to disallow an edge or a vertex to be traversed multiple times.
-
- A walk is closed if the initial vertex is also the terminal vertex. A cycle is a closed trail with at least one edge and with no repeated vertices except that the initial vertex is the terminal vertex. A path in general is not closed; its origin and terminus are different.
-
- A cycle of length k is called a k-cycle. If k is even, the cycle is called even cycle; otherwise, the cycle is called odd cycle. [ÂüÁ¶: walk]
- pendant (Ææ´øÆ®)
- degree (Â÷¼ö)°¡
1ÀÎ ²ÀÁöÁ¡À» Ææ´øÆ® ²ÀÁöÁ¡À̶ó ÇÑ´Ù.
- planar (Æò¸é)
- ¾î¶² ±×·¡ÇÁ¸¦ Æò¸é À§¿¡ ²ÀÁöÁ¡¿¡¼¸¸ ±³Â÷Çϵµ·Ï ±×¸± ¼ö ÀÖÀ¸¸é Æò¸é ±×·¡ÇÁ(planar graph)¶ó ÇÑ´Ù. ¿¹¸¦ µé¸é, K4´Â Æò¸é ±×·¡ÇÁÀÌ´Ù.
- pseudograph (°¡±×·¡ÇÁ)
- ½±°Ô À̾߱âÇÏ¸é °¡±×·¡ÇÁ´Â
´ÙÁߺ¯À̳ª °í¸®¸¦ °¡Áö°í ÀÖ´Â ±×·¡ÇÁÀÌ´Ù.
Á¤È®ÇÏ°Ô Á¤ÀÇÇÏ¸é °¡ ±×·¡ÇÁ´Â ²ÀÁöÁ¡µéÀÇ ÁýÇÕÀÎ V¿Í º¯µéÀÇ ÁýÇÕÀÎ E, ±×¸®°í E¿¡¼ ÁýÇÕ { {u,v} | u,v in V } À¸·ÎÀÇ ÇÔ¼ö f·Î ÀÌ·ç¾îÁ® ÀÖ´Ù. ¿©±â¿¡¼ ÇÔ¼ö f´Â º¯ÀÇ ¾ç³¡Á¡À» Á¦½ÃÇÑ´Ù.
[Âü°í: graph ¹× multigraph]
- terminal vertex (µµÂøÁ¡)
- [Âü°í: digraph]
- trail(Æ®·¹ÀÏ)
- º¯ÀÌ Áߺ¹µÇÁö ¾Ê´Â ¿öÅ©(walk)¸¦ ¸»ÇÑ´Ù.
[Âü°í: walk]
- undirected edge
- º¸ÅëÀÇ graph¸¦ ¸»ÇÑ´Ù.
- valence (Â÷¼ö)
- [Âü°í: degree]
- vertex (²ÀÁöÁ¡)
- [Âü°í: graph].
- walk (¿öÅ©)
- ²ÀÁöÁ¡°ú º¯ÀÌ ±³´ë·Î ³ªÅ¸³ª´Â ¿À̸é¼, °¢ º¯ÀÇ ¾Õ°ú µÚ¿¡ À§Ä¡ÇÑ ²ÀÁöÁ¡À» ±× º¯ÀÇ ¾ç³¡Á¡À¸·Î °®´Â ¿À» ¸»ÇÑ´Ù.