¿ë¾î»çÀü

[ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ]


adjacent (ÀÎÁ¢)
µÎ °³ÀÇ ²ÀÁöÁ¡µéÀÌ ÀÌ¿ôÇÏ°í ÀÖ´Ù´Â °ÍÀº ±×°ÍµéÀÌ º¯À¸·Î ¿¬°áµÇ¾îÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. µÎ °³ÀÇ º¯µéÀÌ ÀÌ¿ôÇÏ°í ÀÖ´Ù´Â °ÍÀº ±×°ÍµéÀÌ ÇÑ ³¡Á¡À» °øÀ¯ÇÏ°í ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù.

arc (À¯Ç⺯)
¹æÇâÀÌ ÀÖ´Â º¯À» ¸»ÇÑ´Ù. [ÂüÁ¶: graph].

articulation point (Àý´ÜÁ¡)
[ÂüÁ¶: cut vertices].

bipartite (À̺Ð) [graph]
¾î¶² ±×·¡ÇÁ°¡ bipartite¶ó´Â °ÍÀº ±×°ÍÀÇ °¢ º¯ÀÌ ÇÑ ³¡Á¡Àº U¿¡ ´Ù¸¥ ³¡Á¡Àº V¿¡ °®µµ·Ï ±×°ÍÀÇ ²ÀÁöÁ¡µéÀÇ ÁýÇÕÀÌ ¿ø¼Ò¸¦ °øÀ¯ÇÏÁö ¾Ê´Â µÎ °³ÀÇ ÁýÇÕ U¿Í V·Î ÀÌºÐµÉ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. bipartite graph¸¦ À̺б׷¡ÇÁ¶ó ºÎ¸£°í (U, V)¸¦ ±×°ÍÀÇ bipartition(À̺РºÐÇÒ)À̶ó ºÎ¸¥´Ù. À̺Р±×·¡ÇÁ°¡ complete bipartite graph (¿ÏÀü À̺Р±×·¡ÇÁ)¶ó´Â °ÍÀº ±×°ÍÀÇ À̺РºÐÇÒÀÌ (U,V)ÀÏ ¶§, UÀÇ °¢ ²ÀÁöÁ¡µéÀÌ VÀÇ ¸ðµç ²ÀÁöÁ¡µé°ú ÀÌ¿ôÇÏ°í ÀÖÀ½À» ÀǹÌÇÑ´Ù. U°¡ m°³ÀÇ ¿ø¼Ò¸¦ V°¡ n°³ÀÇ ¿ø¼Ò¸¦ °¡Áö°í ÀÖ´Â ¿ÏÀü À̺Р±×·¡ÇÁ¸¦ Km,nÀ¸·Î Ç¥½ÃÇÑ´Ù. K3,3´Â ¿·ÀÇ ±×¸²°ú °°´Ù. [ÂüÁ¶: complete graph ¹× cut vertices].

chromatic number (Âø»ö¼ö) [graph]
±×·¡ÇÁÀÇ Âø»ö¼ö¶õ ±×°ÍÀÇ ²ÀÁöÁ¡µéÀ» ¼­·Î ÀÎÁ¢(adjacent)ÇÏ´Â °ÍµéÀº ´Ù¸¥ »öÀ» °®µµ·Ï Ä¥ÇÒ ¶§ ÇÊ¿äÇÑ »öÀÇ ¼ö Áß ÃÖ¼Ò°ªÀ» ÀǹÌÇÑ´Ù. ¿¹¸¦ µé¾î ¿·ÀÇ ±×·¡ÇÁÀÇ Âø»ö¼ö´Â 3ÀÌ´Ù.
   Áöµµ¿¡ ´ëÇÏ¿©¼­µµ ÀÌ Âø»ö¼öÀÇ °³³äÀÌ µµÀ﵃ ¼ö Àִµ¥, Áöµµ¸¦ ±×¸± ¶§ ±¹°æÀ» Á¢ÇÏ°í ÀÖ´Â ³ª¶ó´Â ´Ù¸¥ »öÀ» Ä¥Çϵµ·Ï ÇÏ´Âchromatic number (Âø»ö¼ö) µ¥ ÇÊ¿äÇÑ ÃÖ¼Ò»ö±ò¼ö¸¦ ÀǹÌÇÑ´Ù. [ÂüÁ¶: Four Color Theorem]

circuit (ȸ·Î)
ȸ·Î¶õ ´ÝÈù path (°æ·Î)ÀÌ´Ù. (µû¶ó¼­ loop (°í¸®) ¶õ ±æÀÌ°¡ 1ÀΠȸ·ÎÀÌ´Ù).

closed (´ÝÇôÁø)

closed walk (´ÝÇôÁø ¿öÅ©)
´ÝÇôÁø ¿öÅ©¶õ ½ÃÀÛÁ¡°ú Á¾ÂøÁ¡ÀÌ °°Àº ¿öÅ©(walk)¸¦ ¸»ÇÑ´Ù. ´ÝÇôÁø Æ®·¹ÀÏ(closed trail)À̶õ ½ÃÀÛÁ¡°ú Á¾ÂøÁ¡ÀÌ °°Àº Æ®·¹ÀÏ(trail)À» ¸»ÇÑ´Ù. [ÂüÁ¶: walk ¹× trail].

complete graph (¿ÏÀü±×·¡ÇÁ)
¾î¶² µÎ ²ÀÁöÁ¡µµ ÀÌ¿ôÇÏ´Â ´Ü¼ø ±×·¡ÇÁ(simple graph)¸¦ ¿ÏÀü±×·¡ÇÁ¶ó Çϸç, n°³ÀÇ ²ÀÁöÁ¡À» °¡Áö´Â ¿ÏÀü ±×·¡ÇÁ´Â KnÀ¸·Î ³ªÅ¸³½´Ù. ²ÀÁöÁ¡ÀÇ ¼ö°¡ 1, 2, 3, 4, 5°³ÀÎ ¿ÏÀü ±×·¡ÇÁµéÀº ´ÙÀ½°ú °°´Ù: [1 2 3 4 5]

component (¼ººÐ)
[ÂüÁ¶: connected (¿¬°áµÈ)].

connected (¿¬°áµÈ)
¾î¶² ±×·¡ÇÁ°¡ ¿¬°áµÇ¾î ÀÖ´Ù´Â °ÍÀº ¾î¶² µÎ °³ÀÇ ²ÀÁöÁ¡µµ ±×°ÍµéÀ» ¾ç³¡Á¡À¸·Î ÇÏ´Â °æ·Î(path)°¡ Á¸ÀçÇÔÀ» ÀǹÌÇÑ´Ù. ¿¬°áµÇ¾î ÀÖÁö ¾ÊÀº ±×·¡ÇÁ´Â µÎ °³ ÀÌ»óÀÇ ¿¬°áµÈ ¼ººÐ(component) ¶Ç´Â ¼­·Î °øÅë ºÎºÐÀÌ ¾ø´Â µÎ °³ ÀÌ»óÀÇ ¿¬°áµÈ ºÎºÐ±×·¡ÇÁ(subgraph)·Î ³ª´µ¾î ÀÖ´Ù. ¿¹¸¦ µé¾î ¿·ÀÇ ±×·¡ÇÁ´Â 3°³ÀÇ ¿¬°áµÈ ¼ººÐµé·Î ÀÌ·ç¾îÁ® ÀÖ´Ù.

cut vertex (Àý´ÜÁ¡)
¾î¶² ±×·¡ÇÁÀÇ Àý´ÜÁ¡À̶õ ±×°ÍÀÌ ±× ±×·¡ÇÁ·ÎºÎÅÍ Á¦°ÅµÇ¾úÀ» ¶§ (²ÀÁöÁ¡ÀÌ ±×·¡ÇÁ¿¡¼­ Á¦°ÅµÈ´Ù´Â °ÍÀº ²ÀÁöÁ¡°ú ±×°Í¿¡ ÀÔ»çÇÏ´Â(incident) º¯µéÀ» Áö¿î´Ù´Â °ÍÀ» ÀǹÌ) »ý±â´Â ±×·¡ÇÁÀÇ ¼ººÐ(component)ÀÇ ¼ö°¡ ¿ø·¡º¸´Ù Àû¾îµµ Çϳª ´õ ´Ã¾î³ª°Ô µÇ´Â ²ÀÁöÁ¡À» ¸»ÇÑ´Ù. [ÂüÁ¶: connected (¿¬°áµÈ)].

cycle (ȸ·Î)
ȸ·Î´Â ½ÃÀÛÁ¡°ú Á¾ÂøÁ¡ ¿Ü¿¡´Â ¾î¶² ²ÀÁöÁ¡µµ ¹Ýº¹µÇÁö ¾Ê´Â ´ÝÇôÁø Æ®·¹ÀÏ(closed trail)À» ÀǹÌÇÑ´Ù.

degree (Â÷¼ö) [graph]
±×·¡ÇÁ¿¡¼­ ²ÀÁöÁ¡ÀÇ Â÷¼ö¶õ ±× ²ÀÁöÁ¡À» ³¡Á¡À¸·Î °¡Áö´Â º¯ÀÇ ¼ö¸¦ ÀǹÌÇÑ´Ù. ÀÌ ¶§ °í¸®(loop)´Â µÎ ¹ø ¼¼¾î ÁØ´Ù. valence¶ó°íµµ ÇÑ´Ù. ¿¹¸¦ µé¾î, ÀÌ ±×·¡ÇÁ¿¡¼­´Â ¸ðµç ²ÀÁöÁ¡µéÀÌ Â÷¼ö¸¦ 3À¸·Î °®´Â´Ù. À¯Çâ±×·¡ÇÁ(digraph) ¿¡¼­´Â Â÷¼öÀÇ °³³äÀÌ ³»Â÷¼ö(in-degree)¿Í ¿ÜÂ÷¼ö(out-degree) ·Î ³ª´µ¾î Áø´Ù. (°¢ ²ÀÁöÁ¡ÀÇ ³»Â÷¼ö¿Í ¿ÜÂ÷¼ö¸¦ ¸ðµÎ ´õÇÏ¸é ±× À¯Çâ±×·¡ÇÁÀÇ ¹æÇâÀ» ¹«½ÃÇÏ¿© »ý±â´Â ±×·¡ÇÁÀÇ °¢ ²ÀÁöÁ¡ÀÇ Â÷¼ö¿Í °°´Ù.)

digraph (À¯Çâ±×·¡ÇÁ) [GRAPH]
À¯Çâ±×·¡ÇÁ¶õ ±×°ÍÀÇ °¢ º¯ÀÌ ¹æÇâÀ» °®°í ÀÖ´Â ±×·¡ÇÁ¸¦ ÀǹÌÇÑ´Ù. Á» ´õ Á¤È®È÷ Á¤ÀÇÇϸé À¯Çâ±×·¡ÇÁ¶õ V¶ó´Â À¯ÇÑ ÁýÇÕ°ú ¿ø¼ÒµéÀÌ VÀÇ ¿ø¼Òµé·Î ÀÌ·ç¾îÁø ¼ø¼­½ÖµéÀÎ ÁýÇÕ A·Î ÀÌ·ç¾îÁø ¼ø¼­½Ö (V,A)¸¦ ÀǹÌÇÑ´Ù. VÀÇ ¿ø¼ÒµéÀ» ²ÀÁöÁ¡(vertex)À̶ó ºÎ¸£°í AÀÇ ¿ø¼ÒµéÀ» À¯Ç⺯(arc)À̶ó°í ºÎ¸¥´Ù. À¯Ç⺯ (a,b)ÀÌ ÁÖ¾îÁ³À» ¶§ a¸¦ ±× À¯Ç⺯ÀÇ ½ÃÀÛÁ¡(initial vertex), b¸¦ Á¾ÂøÁ¡(terminal vertex)À̶ó°í ºÎ¸¥´Ù.

directed graph (À¯Çâ±×·¡ÇÁ)
[ÂüÁ¶: digraph]

edge (º¯)
[ÂüÁ¶: graph]

Four Color Theorem (4»ö ¹®Á¦)
¸ðµç planar (Æò¸é) graph ÀÇ chromatics number (Âø»ö¼ö) °¡ 4ÀÌÇ϶ó°í ÁÖÀåÇÏ´Â ¹®Á¦ÀÌ´Ù.

graph
½±°Ô À̾߱âÇÏ¸é º¯(edge)À̶ó°í ºÒ¸®´Â °Íµé¿¡ ÀÇÇÏ¿© ¿¬°áµÈ ²ÀÁöÁ¡µéÀÇ À¯ÇÑ ÁýÇÕÀÌ´Ù. Á» ´õ Á¤È®È÷ Á¤ÀÇÇϸé, ´Ü¼ø ±×·¡ÇÁ(simple graph)¶õ V¶ó´Â ²ÀÁöÁ¡ÀÇ ÁýÇÕ°ú VÀÇ ¼­·Î ´Ù¸¥ µÎ ¿ø¼Ò·Î ÀÌ·ç¾îÁø ÁýÇÕµéÀÇ ÁýÇÕ E·Î ÀÌ·ç¾îÁø ¼ø¼­½Ö (V,E)¸¦ ÀǹÌÇÑ´Ù.
   ¸ðµç ±×·¡ÇÁ°¡ ´Ù ´Ü¼ø ±×·¡ÇÁ´Â ¾Æ´Ï´Ù. ¶§¶§·Î µÎ °³ÀÇ ²ÀÁöÁ¡µéÀÌ ¿©·¯ °³ÀÇ º¯µé(multiple edges)·Î ¿¬°áµÉ ¼öµµ ÀÖ°í, ÇÑ ²ÀÁöÁ¡ÀÌ ÀÚ±â ÀڽŰú °í¸®(loop)¶ó´Â º¯¿¡ ÀÇÇÏ¿© ¿¬°áµÉ ¼öµµ ÀÖ´Ù. °æ¿ì¿¡ µû¶ó¼­ ±×·¡ÇÁ¸¦ multigraph (¸ÖƼ±×·¡ÇÁ)·Î ´Ü¼ø ±×·¡ÇÁ¸¦ ±×·¡ÇÁ(graph)·Î ºÎ¸¦ ¶§µµ ÀÖ´Ù. ±×·¡ÇÁÀÇ °¢ º¯¿¡ ¹æÇâÀ» ÁÙ ¼ö Àִµ¥ ÀÌ·¸°Ô ÇÏ¿© »ý±ä ±×·¡ÇÁ¸¦ À¯Çâ±×·¡ÇÁ(digraph ¶Ç´Â directed graph)¶ó°í ºÎ¸¥´Ù.

in-degree (³»Â÷¼ö)
¾î¶² ²ÀÁöÁ¡ vÀÇ ³»Â÷¼ö¶õ v¸¦ Á¾ÂøÁ¡À¸·Î °¡Áö´Â À¯Ç⺯(arc)ÀÇ °³¼ö¸¦ ¸»ÇÑ´Ù. [ÂüÁ¶: digraph¿Í degree]

initial vertex (½ÃÀÛÁ¡)
[ÂüÁ¶: digraph]

isolated (ºÐ¸®µÈ)
Â÷¼ö (degree)°¡ 0ÀÎ ²ÀÁöÁ¡, Áï º¯ÀÇ ³¡µµ ¾Æ´Ñ ²ÀÁöÁ¡À» ºÐ¸®µÇ¾ú´Ù°í ÇÑ´Ù.

Kuratowski's Theorem (Á¤¸®)
±×·¡ÇÁ°¡ Æò¸é±×·¡ÇÁ°¡ ¾Æ´Ï¶ó´Â °Í°ú ±×°ÍÀÌ K3,3 ¶Ç´Â K5¿Í µ¿»óÀÎ(homeomorphic) ºÎºÐ±×·¡ÇÁ¸¦ Æ÷ÇÔÇÏ´Â °ÍÀº ¼­·Î µ¿Ä¡ÀÌ´Ù.

length (±æÀÌ)
[ÂüÁ¶: °æ·Î(path)ÀÇ ±æÀÌ path].

loop (°í¸®)
°í¸®¶õ ¾ç³¡Á¡ÀÌ °°Àº º¯À» ÀǹÌÇÑ´Ù. [ÂüÁ¶: degree(Â÷¼ö)¿¡ ´ëÇÑ ¼³¸íÁß °í¸®¸¦ 3°³ °¡Áø ±×·¡ÇÁ¿¡ ´ëÇÑ ¿¹¸¦ º¸½Ã¿À].

multigraph (¸ÖƼ±×·¡ÇÁ)
½±°Ô À̾߱âÇÏ¸é ¸ÖƼ±×·¡ÇÁ´Â µÎ °³ÀÇ ²ÀÁöÁ¡»çÀÌ¿¡ ¿©·¯°³ÀÇ º¯ÀÌ ÀÖ´Â ±×·¡ÇÁ¸¦ ÀǹÌÇÑ´Ù. Á»´õ Á¤È®ÇÏ°Ô Á¤ÀÇÇϸé, ¸ÖƼ±×·¡ÇÁ´Â V¶ó°í ÇÏ´Â ²ÀÁöÁ¡µéÀÇ ÁýÇÕ°ú º¯µéÀÇ ÁýÇÕÀÎ E, ±×¸®°í E·ÎºÎÅÍ V¿¡ ÀÖ´Â ²ÀÁöÁ¡µéÀÇ ¼ø¼­½ÖÀÇ ÁýÇÕ({{u,v}|u,v in V; uv })À¸·ÎÀÇ ÇÔ¼ö f·Î ÀÌ·ç¾îÁ® ÀÖ´Ù. ¿©±â¿¡¼­ ÇÔ¼ö f´Â º¯ÀÇ ¾ç³¡Á¡À» Á¦½ÃÇÑ´Ù. ¸¸¾à, µÎ °³ÀÇ º¯ r°ú sÀÇ ÇÔ¼ö°ªÀÌ °°´Ù¸é, Áï f(r)=f(s)À̸é, ¿ì¸®´Â r°ú s´Â ÆòÇàÇÏ´Ù¶ó°í Çϰųª multiple edges¶ó°í ÇÑ´Ù. [ÂüÁ¶: graph¿Í pseudograph]

multiple edge (´ÙÁߺ¯)
[ÂüÁ¶: multigraph (´ÙÁß±×·¡ÇÁ)]

node (³ëµå)
vertex (²ÀÁöÁ¡)°ú ƒˆÀº ¸»ÀÌ´Ù. [ÂüÁ¶: graph]

out-degree (¿ÜÂ÷¼ö)
¾î¶² ²ÀÁöÁ¡vÀÇ ¿ÜÂ÷¼ö¶õ ½ÃÀÛÁ¡À» v·Î ÇÏ´Â À¯Ç⺯(arc)ÀÇ °³¼ö¸¦ ¸»ÇÑ´Ù. [ÂüÁ¶: digraph (À¯Çâ±×·¡ÇÁ) ¿Í

parallel edge (ÆòÇຯ)
[ÂüÁ¶: multigraph]. [path]

path, walk, trail, cycle (Çѱ¹ °í±³ ±³°ú¼­¿¡¼­´Â °æ·Î=trail ·Î Á¤ÀÇÇÑ´Ù)
 
A trail is a special type of walk, which is stricter in the transition of edges than a walk. A trail is allowed to traverse only once for each edge. However, a trail is still allowed to traverse multiple times for the same vertex.
 
A path is a walk with no repeated vertexes, which is stricter than a trail to disallow an edge or a vertex to be traversed multiple times.
 
A walk is closed if the initial vertex is also the terminal vertex. A cycle is a closed trail with at least one edge and with no repeated vertices except that the initial vertex is the terminal vertex. A path in general is not closed; its origin and terminus are different.
 
A cycle of length k is called a k-cycle. If k is even, the cycle is called even cycle; otherwise, the cycle is called odd cycle.  [ÂüÁ¶: walk]

pendant (Ææ´øÆ®)
degree (Â÷¼ö)°¡ 1ÀÎ ²ÀÁöÁ¡À» Ææ´øÆ® ²ÀÁöÁ¡À̶ó ÇÑ´Ù.

planar (Æò¸é)
¾î¶² ±×·¡ÇÁ¸¦ Æò¸é À§¿¡ ²ÀÁöÁ¡¿¡¼­¸¸ ±³Â÷Çϵµ·Ï ±×¸± ¼ö ÀÖÀ¸¸é Æò¸é ±×·¡ÇÁ(planar graph)¶ó ÇÑ´Ù. ¿¹¸¦ µé¸é, K4´Â Æò¸é ±×·¡ÇÁÀÌ´Ù.

pseudograph (°¡±×·¡ÇÁ)
½±°Ô À̾߱âÇÏ¸é °¡±×·¡ÇÁ´Â ´ÙÁߺ¯À̳ª °í¸®¸¦ °¡Áö°í ÀÖ´Â ±×·¡ÇÁÀÌ´Ù. Á¤È®ÇÏ°Ô Á¤ÀÇÇÏ¸é °¡ ±×·¡ÇÁ´Â ²ÀÁöÁ¡µéÀÇ ÁýÇÕÀÎ V¿Í º¯µéÀÇ ÁýÇÕÀÎ E, ±×¸®°í E¿¡¼­ ÁýÇÕ { {u,v} | u,v in V } À¸·ÎÀÇ ÇÔ¼ö f·Î ÀÌ·ç¾îÁ® ÀÖ´Ù. ¿©±â¿¡¼­ ÇÔ¼ö f´Â º¯ÀÇ ¾ç³¡Á¡À» Á¦½ÃÇÑ´Ù. [Âü°í: graph ¹× multigraph]

terminal vertex (µµÂøÁ¡)
[Âü°í: digraph]

trail(Æ®·¹ÀÏ)
º¯ÀÌ Áߺ¹µÇÁö ¾Ê´Â ¿öÅ©(walk)¸¦ ¸»ÇÑ´Ù. [Âü°í: walk]

undirected edge
º¸ÅëÀÇ graph¸¦ ¸»ÇÑ´Ù.

valence (Â÷¼ö)
[Âü°í: degree]

vertex (²ÀÁöÁ¡)
[Âü°í: graph].

walk (¿öÅ©)
²ÀÁöÁ¡°ú º¯ÀÌ ±³´ë·Î ³ªÅ¸³ª´Â ¿­À̸鼭, °¢ º¯ÀÇ ¾Õ°ú µÚ¿¡ À§Ä¡ÇÑ ²ÀÁöÁ¡À» ±× º¯ÀÇ ¾ç³¡Á¡À¸·Î °®´Â ¿­À» ¸»ÇÑ´Ù.