next up previous
Next: About this document ...


´ÙÀ½ Á¤¸®´Â ´ë°¢È­°¡´ÉÇÏÁö ¾ÊÀº Çà·ÄÀÌ¶óµµ ´ë°¢¼±Çà·Ä°ú À¯»çÇÑ Çà·Ä°ú ´àÀ½(similar)ÀÌ µÇµµ·Ï ¸¸µé ¼ö ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁØ´Ù.

Á¤¸® 8.8

${\mathit{n}}$Â÷ÀÇ Á¤»ç°¢Çà·Ä ${\mathit{A}}$°¡ ${\mathit{(1 \leq t \leq n)}}$ °³ÀÇ ÀÏÂ÷µ¶¸³ÀÎ °íÀ¯º¤Å͸¦ °¡Áö¸é ${\mathit{A}}$´Â ´ÙÀ½°ú °°Àº Çà·Ä ${\mathit {J_{A}}}$¿Í (À¯´ÏŸ¸®)´àÀ½ÀÌ´Ù.
\begin{displaymath}{{\mathit{J_{A}}} = \left( \begin{array}{cccc} {J_{1}} &... ... & \\  & & {\ddots} & \\  0 & & & {J_{t}} \end{array} \right)}\end{displaymath}

¿©±â¼­, ${ {\mathit{J_{k}}} = \left( \begin{array}{cccc} {{\lambda}_{i}} & 1 & & 0 \\... ...dots} & \\  & & {\ddots} & 1 \\  0 & & & {{\lambda}_{i}} \end{array} \right) }$${\mathit{(1 \leq k \leq t)}}$ÀÌ°í, À̸¦ ${\mathit{A}}$ÀÇ °íÀ¯°ª ${{\lambda}_{i}}$¿¡ ´ëÇÑ ÇϳªÀÇ Jordan blockÀ̶ó ºÎ¸¥´Ù. À̶§ ${\mathit {J_{A}}}$¸¦ ${\mathit{A}}$ÀÇ Jordan Ç¥ÁØÇü(Jordan canonical form)À̶ó ÇÑ´Ù.

À§ÀÇ Á¤¸®¿¡¼­ °¢ Jordan block ${\mathit{J_{k}}}$´Â ´ë°¢¼± ¼ººÐÀ¸·Î °°Àº °íÀ¯°ª ${{\lambda}_{i}}$¸¦ °®´Â »ó»ï°¢Çà·Ä(upper triangular matrix)ÀÌ´Ù.
ƯÈ÷, ${\mathit{A}}$°¡ ${\mathit{n}}$°³ÀÇ ÀÏÂ÷µ¶¸³ÀÎ °íÀ¯º¤Å͵éÀ» °®´Â´Ù¸é ${\mathit{n}}$°³ÀÇ Jordan blockÀ» °®´Â Jordan Ç¥ÁØÇüÀ» °®°í, ´ë°¢¼±Çà·Ä°ú ´àÀºÇà·ÄÀÌ µÈ´Ù.

¶ÇÇÑ, ÇϳªÀÇ °íÀ¯°ª ${{\lambda}_{i}}$ ÀÇ Áߺ¹µµ°¡ ${\mathit{m}}$ÀÌ°í ÀÌ¿¡ ´ëÀÀÇÏ´Â${\mathit{k}}$°³ ${\mathit{(k {\leq}m)}}$ÀÇ ÀÏÂ÷µ¶¸³ÀÎ °íÀ¯º¤Å͵éÀ» °®´Â´Ù¸é ${\mathit{A}}$´Â${{\lambda}_{i}}$¸¦ ´ë°¢¼±¼ººÐÀ¸·Î °®´Â ${\mathit{k}}$°³ÀÇ Jordan block°ú ¶Ç ´Ù¸¥ °íÀ¯°ª¿¡ ´ëÀÀÇÏ´Â Jordan blockµéÀ» °®°Ô µÈ´Ù. ±×¸®°í ${{\lambda}_{i}}$¿¡ ´ëÀÀÇÏ´Â ¸ðµç Jordan blockµéÀÇ Å©±âÀÇ ÇÕÀº ${{\lambda}_{i}}$ÀÇ Áߺ¹ÀΠ${\mathit{m}}$ÀÌ µÈ´Ù. µû¶ó¼­, ´ë°¢¼±Çà·ÄÀº Jordan Ç¥ÁØÇüÀÇ ÇÑ Æ¯¼öÇÑ °æ¿ìÀÌ´Ù.

¾î¶² Çà·Ä ${\mathit{A}}$ÀÇ Jordan Ç¥ÁØÇü ${\mathit {J_{A}}}$´Â ${\mathit{P^{-1}AP=J_{A}}}$°¡ µÇ°Ô ÇÏ´Â °¡¿ªÇà·Ä ${\mathit{P}}$¸¦ ¸ô¶óµµ, °¢ °íÀ¯°ªÀÇ Áߺ¹µµ¿Í ±× °íÀ¯°ª¿¡ ´ëÇÑ °íÀ¯°ø°£(eigenspace)¾È¿¡ ÀÖ´Â 1Â÷µ¶¸³ÀÎ °íÀ¯º¤Å͵éÀÇ ¼ö (Áï, °íÀ¯°ø°£ÀÇ Â÷¿ø)¿¡ ÀÇÇÏ¿© ´ëºÎºÐÀº ¹Ù·Î °áÁ¤µÈ´Ù. ¹°·Ð, °æ¿ì¿¡ µû¶ó ${\mathit{P^{-1}AP=J_{A}}}$µÇ´Â Çà·Ä ${\mathit{P}}$¸¦ ±¸ÇÏ´Â °ÍÀÌ ²À ÇÊ¿äÇÒ ¶§µµ ÀÖ´Ù.

ÀÌÁ¦, ¿¹¸¦ ÅëÇÏ¿© Jordan Ç¥ÁØÇüÀÇ ¼ºÁú°ú ${\mathit{J_{A}, P}}$¸¦ ±¸ÇÏ´Â °úÁ¤À» ¾Ë¾Æ º¸ÀÚ.

¡¼¿¹Á¦ 1¡½

5Â÷ÀÇ Á¤»ç°¢Çà·Ä ${\mathit{A}}$°¡ Áߺ¹µµ 5 ÀÎ °íÀ¯°ª ${\lambda}$ Çϳª¸¸À» °®°í ${\lambda}$¿¡ ´ëÀÀÇÏ´Â ÀÏÂ÷µ¶¸³ÀÎ °íÀ¯º¤Å͸¦ ´Ü Çϳª °®´Â´Ù¸é ${\mathit{A}}$ÀÇ Jordan Ç¥ÁØÇüÀº
\begin{displaymath}{{\mathit{J_{A}}} = \left(\begin{array}{ccccc}{\lambda} ... ... {\lambda} & 1 \\ 0 & 0 & 0 & 0 & {\lambda}\end{array} \right)}\end{displaymath} ÀÌ´Ù. ¿Ö³ÄÇϸé ${\mathit{A}}$ÀÇ ÀÏÂ÷µ¶¸³ÀÎ °íÀ¯º¤ÅÍ´Â Çϳª¹Û¿¡ ¾ø±â ¶§¹®ÀÌ´Ù. ¶
ÀÌÁ¦ Çà·Ä ${\mathit{A}}$ÀÇ Jordan blockÀÇ ¼ºÁúÀ» ºÐ¼®Çغ¸ÀÚ. ${({\mathit{J_{A}}}-{\lambda}{\mathit{I}})}$´Â ´ÙÀ½¼ºÁúÀ» °®´Â ${\mathit{R^5}}$»óÀÇ ¼±Çüº¯È¯ÀÌ´Ù.
\begin{displaymath}{{({\mathit{J_{A}}}-{\lambda}{\mathit{I}}){x}} = \left(\be... ...n{array}{c}x_2 \\ x_3 \\ x_4 \\ x_5 \\ 0\end{array} \right)} \end{displaymath}

±×·±µ¥, ${\mathit{e_1, e_2, e_3, e_4, e_5}}$°¡ ${\mathit{R^5}}$ÀÇ Ç¥ÁرâÀúÀÏ ¶§ ${({{\mathit{J_{A}}}-{\lambda}{\mathit{I}}}){e_1} = 0}$ÀÌ°í ${( {\mathit{J_{A}}}-{\lambda}{\mathit{I}}){e_{i}} = {e_{i-1}},\: i = 2, 3, 4, 5 }$À̹ǷΠ${\mathit{e_1}}$Àº ${\lambda}$ ¿¡ ´ëÀÀÇϴ ${\mathit {J_{A}}}$ÀÇ Çϳª»ÓÀÎ ÀÏÂ÷µ¶¸³ÀÎ °íÀ¯º¤ÅÍÀÌ´Ù. ${({\mathit{J_{A}}-{\lambda}{\mathit{I}}})^{i}{e_{i}} = 0, (i = 2, 3, 4, 5 )}$ÀÌ°í ÀÌ ½ÄÀº $ {({{\mathit{J_{A}}}-{\lambda}{\mathit{I}}}){x} = 0}$ °ú ºñ½ÁÇÑ ²ÃÀ̹ǷΠ${{\mathit{e_{i}}}, (i = 2, 3, 4, 5)}$°¡ ${\mathit {J_{A}}}$ÀÇ °íÀ¯º¤ÅÍ´Â ¾Æ´ÏÁö¸¸ °íÀ¯º¤ÅÍ¿Í À¯»çÇÑ ¼ºÁúÀ» °®°Ô µÈ´Ù. ÀÌ·± ${{\mathit{e_{i}}}, (i = 2, 3, 4, 5)}$¸¦ ${\mathit {J_{A}}}$ ¿¡ ´ëÇÑ ÀϹÝÈ­µÈ °íÀ¯º¤ÅÍ (generalized eigenvector)¶ó°í ÇÑ´Ù.

ÀϹÝÀûÀ¸·Î ${\mathit{{P}^{-1}AP}}$ÀÇ Jordan Ç¥ÁØÇü ${\mathit {J_{A}}}$ °¡ µÇ´Â Çà·Ä ${\mathit{P}}$¸¦ ±¸ÇÏ´Â ¹®Á¦¸¦ "ÀϹÝÈ­µÈ °íÀ¯º¤Å͸¦ ±¸ÇÏ´Â ¹®Á¦" ¶ó Çϴµ¥, ÀÌ°ÍÀº ÀÌÃ¥ÀÇ ¼öÁØÀ» ³Ñ¾î¼­¹Ç·Î ¿©±â¼­´Â ´Ù·çÁö ¾Ê±â·Î ÇÑ´Ù.
 




ÀÌÃáÀç

11/12/1997