(´ëÇѼöÇÐȸ Àü»ê¼öÇÐ ºÐ°ú 2001 ÇмúȸÀÇ)
KOREA COMBINATORICS, GRAPH THEORY,
ALGORITHMS and MATRIX THEORY SYMPOSIUM 2001
FEB., 20 - 21, 2001 POSTECH, POHANG, KOREA
ÀÏ Á¤
2001³â 2¿ù 20ÀÏ
¿ÀÈÄ 1½Ã- 1½Ã 40ºÐ : µî·Ï ¹× ´Ù°ú
¿ÀÈÄ 1½Ã 40ºÐ - 2½Ã : °³È¸»ç
Âü¼® ȸ¿ø ¼Ò°³
¿ÀÈÄ 2½Ã - 5½Ã20ºÐ : ÁÖ Á¦ ¹ß Ç¥
1. °ûÁøÈ£*, I. P. Goulden(Æ÷Ç×°ø´ë), ÀÌÀç¿î(¿µ³²´ë)
2. ¹ÚÁøÈ«*(¼±¹®´ë)
3. Á¶ÇÑÇõ(¼¿ï´ë), ±è¼·É(°æÈñ´ë)*, ³²À±¼ø(»ï¼º°íµî¿¬±¸¿ø)
4. ¹æ¼¼Á¤*, ¼Û¼º¿, Mitsugu Hirasaka(Æ÷Ç×°ø´ë)
5. ÀÌ»ó¿í*, °í¿µ¹Ì(¼ö¿ø´ë)
6. ÀÌâ¿ì(¼¿ï½Ã¸³´ë)
7. ¼ÛÁØÈ£(¼¿ï½Ã¸³´ë)
8. Shao-Fei Du*, Jin Ho Kwak, Raman Nedela(Æ÷Ç×°ø´ë)
¿ÀÈÄ 5½Ã20ºÐ - 5½Ã 30ºÐ : Åä ·Ð
¿ÀÈÄ 5½Ã 40ºÐ - 7½Ã : Àú³á ½Ä»ç ¹× ¼÷¼Ò ¹èÁ¤
2001³â 2¿ù 21ÀÏ
~ ¿ÀÀü 8½Ã 30ºÐ : ±â»ó, ¾Æħ ½Ä»ç
¿ÀÀü 8½Ã 40ºÐ - 9½Ã : Tea Time
¿ÀÀü 9½Ã - 12½Ã 20ºÐ : ÁÖÁ¦ ¹ßÇ¥ ¹× Åä·Ð
1. ¼Û¼º¿*(Æ÷Ç×°ø´ë), Kyoungah See, J. Stufken
2. ¼Û¼®ÁØ(Á¦ÁÖ´ë)
3. ¼Õ¹«¿µ(â¿ø´ë)
4. Á¶¼ºÁø(ºÎ°æ´ë)*, ±èÇѵÎ(ÀÎÁ¦´ë), ÃÖÀº¼÷(ºÎ°æ´ë)
5. ±èÁøȯ(¿µ³²´ë)
6. ±èÁÖ¿µ(´ëÈ¿Ä«´ë)
7. ¹é¿µ±æ(ºÎ°æ´ë)
8. ±è°ü¼ö(¿µ³²´ë)
9. ÀÌ»ó±¸(¼º±Õ°ü´ë)
12½Ã 20ºÐ - 12½Ã 30ºÐ : Æä ȸ
ÈÄ¿ø: °úÇÐÀç´Ü Àü»ê¼öÇבּ¸¼¾ÅÍ , ´ëÇѼöÇÐȸ Àü»ê¼öÇкаú
´ëÇѼöÇÐȸ Àü»ê¼öÇкаúÀ§¿ø:
°ûÁøÈ£(À§¿øÀå: Æ÷Ç×°ø´ë), ±èµ¿¼ö(°ú±â¿ø), ±è¼·É(°æÈñ´ë), Ȳ¼®±Ù(°æºÏ´ë), ¼Û¼®ÁØ(Á¦ÁÖ´ë), ÀÌ»ó±¸(¼º±Õ°ü´ë)
¹ß Ç¥ ³í ¹® ¸ñ ·Ï
(SESSION)
(20ÀÏ)
1. °ûÁøÈ£*, I. P. Goulden(Æ÷Ç×°ø´ë), ÀÌÀç¿î(¿µ³²´ë) : Distributions of regular branched surface coverings
2. ¹ÚÁøÈ«*(¼±¹®´ë) : How do we analyze Algorithms ?
3. Á¶ÇÑÇõ(¼¿ï´ë), ±è¼·É(°æÈñ´ë)*, ³²À±¼ø(»ï¼º°íµî¿¬±¸¿ø) : On m-step competition graphs,
4. ¹æ¼¼Á¤*, ¼Û¼º·Ä, Mitsugu Hirasaka(Æ÷Ç×°ø´ë) : Semidirect products of association schemes.
5. ÀÌ»ó¿í*, °í¿µ¹Ì(¼ö¿ø´ë) : Spectral Properties of Bipartite Tournament Matrices
6. ÀÌâ¿ì(¼¿ï½Ã¸³´ë) : The Expected Independent Domination Number of a Random Recursive Tree
7. ¼ÛÁØÈ£(¼¿ï½Ã¸³´ë) : On Self-Avoiding Walks
(21ÀÏ)
1. ¼Û¼º·Ä*(Æ÷Ç×°ø´ë), Kyoungah See, J. Stufken : Certain Combinatorial Block Designs and Spatially Constrained Sampling
2. ¼Û¼®ÁØ(Á¦ÁÖ´ë) : Linear operators preserving maximal column ranks of nonbinary Boolean matrices
3. ¼Õ¹«¿µ(â¿ø´ë) : Some connectivity of covering graphs
4. Á¶¼ºÁø(ºÎ°æ´ë)*, ±èÇѵÎ(ÀÎÁ¦´ë), ÃÖÀº¼÷(ºÎ°æ´ë) : Trees in linear nongroup cellular automata
5. ±èÁøȯ(¿µ³²´ë) : Embeddings of line graphs
6. ±èÁÖ¿µ(´ëÈ¿Ä«´ë) : The pebbling number of some graphs
7.
¹é¿µ±æ(ºÎ°æ´ë) :
Applications of pictures in group presentation theory.
8. ±è°ü¼ö(¿µ³²´ë) : On outer automorphism groups of pinched 1-relator
groups
9. ÀÌ»ó±¸(¼º±Õ°ü´ë) : A representation and some properties for k-Fibonacci sequences
¹ß Ç¥ ÀÏ Á¤ (*´Â ¹ßÇ¥ÀÚ)
13:00¡13:40 |
Á¢ ¼ö ¹× µî ·Ï |
|||||
13:40¡14:00 |
°³È¸½Ä (Àü»ê¼öÇм¾ÅÍ °ûÁøÈ£ ¼ÒÀå) ¹× ¼Ò°³ |
|||||
|
Àü»ê¼öÇÐ ºÐ°ú |
|||||
ÁÂÀå |
ÃÊ Ã» ¹ßÇ¥ÀÚ |
½Ã°£ |
±âŸ |
|||
2¿ù 20ÀÏ (È) 14:00¡17:20 |
¼Û¼º·Ä |
°ûÁøÈ£*, I. P. Goulden, ÀÌÀç¿î (30ºÐ)
¹ÚÁøÈ«(30ºÐ) 3:00-3:10 Tea Time Á¶ÇÑÇõ, ±è¼·É*, ³²À±¼ø (20ºÐ)
¹æ¼¼Á¤*, ¼Û¼º·Ä, Mitsugu Hirasaka(20ºÐ)
ÀÌ»ó¿í*, °í¿µ¹Ì (20ºÐ) 4:10-4:20 Tea Time ÀÌâ¿ì (20ºÐ)
¼ÛÁØÈ£ (20ºÐ)
Shao-Fei Du*, Jin Ho
Kwak, Roman Nedela (20ºÐ)
|
°¢°¢ ¹ßÇ¥, Áú¹®, break |
|
||
17:20¡17:30 17:40~ ... |
Åä ·Ð
¼® ½Ä, ¼÷ ¼Ò ¹è Á¤ ¹× Åä ÀÇ |
|||||
2¿ù 21ÀÏ (È) 09:00¡12:20 |
¹Ú ÁøÈ«
|
¼Û¼º·Ä*, ½Ã°æ¼÷, J. Stufken (20ºÐ)
¼Û¼®ÁØ (20ºÐ)
¼Õ¹«¿µ (20ºÐ) 10:00-10:10 Tea Time Á¶¼ºÁø*, ±èÇѵÎ, ÃÖÀº¼÷ (20ºÐ)
±èÁøȯ (20ºÐ)
±èÁÖ¿µ (20ºÐ) 11:10-11:20 Tea Time ¹é¿µ±æ (20ºÐ)
±è°ü¼ö (20ºÐ)
ÀÌ»ó±¸ (20ºÐ)
|
°¢°¢ ¹ßÇ¥, Áú¹®, break |
|
||
12:20¡12:30 13:30~ |
Æó ȸ Áß ½Ä |
|||||
14:00¡16:30 |
OPEN |
¹ß Ç¥ ³í ¹® ÃÊ ·Ï
(2¿ù 20ÀÏ)
1. Jin Ho Kwak with I.P. Goulden and Jaeun Lee
Á¦ ¸ñ : Distributions of regular branched surface coverings
ÃÊ ·Ï : In a study of surface branched coverings, one
can ask naturally:
In how many different ways can a given surface be a branched covering of another given surface? In this paper, as a complete answer of the question for regular coverings, we determine the distribution of the regular branched coverings of any orientable or nonorientable surface when the covering transformation group and a set of branch points are fixed.
2. ¹ÚÁøÈ« (¼±¹®´ë)
Á¦ ¸ñ : How do we analyze Algorithms?
ÃÊ ·Ï : We shall discuss one of some techniques needed to analyze algorithms. It is called a big-O function technique. The measures of efficiency of an algorithm
have two cases. One is the {\it time } used by a computer to solve the problem using this algorithm when the input values are of a specified size. The other one is the {\it amount of computer memory } required to implement the algorithm when the input values are of a specified size.
3. Á¶ÇÑÇõ(¼¿ï´ë), ±è¼·É*(°æÈñ´ë), ³²À±¼ø(»ï¼º°íµî¿¬±¸¿ø)
Á¦ ¸ñ : On $m$-step competition graphs
ÃÊ ·Ï : The competition graph of a digraph was introduced by Cohen in 1968associated with the study of ecosystems. Since then, the competition graph has been widely studied and many variations have been introduced. Cho,~{\em et al.}~[1997] introduced the notion of $m$-step competition graph which is another generalization of competition graph. If there is a directed walk of length $m$ from a vertex $x$ to a vertex $y$ in $D$, we call $y$ an $m$-step prey of $x$, and if a vertex $w$ is an $m$-step prey of both vertices $u$ and $v$, then we say that $w$ is an $m$-step common prey of $u$ and $v$.The $m$-step competition graph of $D$, denoted by $C^{m}(D)$, has the same vertex set as $D$ and an edge between vertices $x$ and $y$ if and only if $x$ and $y$ have an $m$-step common prey in $D$. The $m$-step competition number $k^{(m)}(G)$ of $G$, which is the smallest number $k$ such that $G$ together with $k$ isolated vertices is the $m$-step competition graph of an acyclic digraph.
In this talk, we present some main results on $m$-step competition graphs and $m$-step competition numbers.
4. ¹æ¼¼Á¤*, ¼Û¼º·Ä, Mitsugu Hirasaka(Æ÷Ç×°ø´ë)
Á¦ ¸ñ : Semidirect products of association schemes
ÃÊ ·Ï : We construct a semidirect product of association sche-mes, and
derive a way to decompose a given association scheme into smaller
association schemes. We show that the semidirect product produces
many schemes that can not be described as the direct product nor
wreath product. We then investigate how much the semidirect
product helps us to understand and characterize the structure of
association schemes.
5. ÀÌ»ó¿í*, °í¿µ¹Ì(¼ö¿ø´ë)
Á¦ ¸ñ : Spectral Properties of Bipartite Tournament Matrices
ÃÊ ·Ï : A tournament is a complete digraph, that is, a complete graph with edges endowed with directions. The incidence matrix of a tournament is called a tournament matrix. In the same way, A bipartite tournament matrix is defined as the incidence matrix of a complete bipartite digraph, which is called a bipartite tournament, that is, a complete bipartite graph with edges directed. A bipartite tournament matrix is said to be of team size and if the underlying complete bipartite graph is .
We look at the spectral bounds of a bipartite tournament matrix. Let be an irreducible bipartite tournament matrix with team size . For an eigenvalue of , it is satisfied that ¡Â Re ¡Â . When the equality holds, the Perron value of should be with . We also find the condition for the variance of the Perron vector of the bipartite tournament matrix to vanish.
6.
ÀÌâ¿ì(¼¿ï½Ã¸³´ë)
Á¦ ¸ñ : The Expected Independent Domination Number of a Random Recursive Tree
ÃÊ
·Ï : We derive a formula
for the expected value $\mu(n)$ of the independent
domination number of a
random recursive tree with $n$ vertices and
show that the independent domination number of almost
every recursive tree
with $n$ vertices is quite close to $n/2$.
7.
¼ÛÁØÈ£(¼¿ï½Ã¸³´ë)
Á¦ ¸ñ : On Self-Avoiding Walks
ÃÊ
·Ï : We investigate paths of a walker under
the condition that the walker is not allowed to visit any point more than
once and to make
any turn more than n\pi/2 from any of the direction
previously taken on the square lattice. Moreover, we study the properties of
rational restriction in 2-choice, 3-choice directed self-avoiding walks,
and \Phi_{max}=\pi model. Using a graph theorical method,
difference equations are derived to count the total number of paths of the
walker.
8. Shao-Fei Du*, Jin Ho Kwak, Roman Nedela(Æ÷Ç×°ø´ë)
Á¦¸ñ : Regular embeddings of complete multipartite graphs
ÃÊ·Ï: TBA
(2¿ù 21ÀÏ)
1. ¼Û¼º·Ä*(Æ÷Ç×°ø´ë), Kyoungah See, John Stufken
Á¦ ¸ñ : Certain Combinatorial Block Designs and Spatially Constrained Sampling
ÃÊ ·Ï : In sampling, before selecting the sample, the population must be divided into parts called sampling units which have to cover the whole population and must not overlap. Sometimes the appropriate unit is obvious, other times there are several choices. In sampling an agricultural crop or soil fertility, the unit might be a square region
of a field or an area of land. Suppose we have information that the neighboring units provide similar information about the population characteristics. In order to obtain better estimates of population characteristics, a researcher would like to take a sample which
does not include neighboring units simultaneously.
In this talk, we construct some designs, called polygonal designs especially useful for such a statistical sampling survey situation. We then demonstrate the use of the designs as such sampling plans. Our discussion will begin with the origin and background
idea of the problem. Then we construct designs appropriate for such sampling plans which avoid the selection of contiguous units. We will also look at a class of combinatorial block designs that are related to the sampling plans. Finally, we will discuss the existence and construction problems of such sampling plans in terms of
combinatorial block designs as well as further related research problems. If time permits we will see some examples that demonstrate the use of the combinatorial designs in practice.
2. ¼Û¼®ÁØ(Á¦ÁÖ´ë)
Á¦ ¸ñ : Linear operators preserving maximal column ranks of nonbinary Boolean matrices
ÃÊ ·Ï : The maximal column rank of an m by n matrix is maximal number of the columns of A which are linearly independent. We compare the maximal column rank with rank of matrices over a nonbinary Boolean algebra. We also characterize the linear operators which preserve the maximal column ranks of matrices over nonbinary Boolean algebra.
3. ¼Õ¹«¿µ (â¿ø´ë)
Á¦ ¸ñ : Some connectivity of covering graphs
ÃÊ ·Ï : In a study of covering graphs, one can ask the connectivity of covering graphs related with base graphs. We will give some inequality of connectivity of covering graphs related with base graphs.
4. Á¶¼ºÁø(ºÎ°æ´ë)*, ±èÇѵÎ(ÀÎÁ¦´ë), ÃÖÀº¼÷(ºÎ°æ´ë)
Á¦ ¸ñ : Trees in linear nongroup cellular automata
ÃÊ ·Ï : We investigate the relationship between $0$-tree and other $\a(\not=0)$-tree in linear nongroup cellular automata.
5. ±èÁøȯ (¿µ³²´ë)
Á¦ ¸ñ : Embeddings of line graphs"
ÃÊ ·Ï : For a 2-cell embedding of a graph $G$, we
consider a special 2-cell embedding for the line graph of G and
a relationship between its lifts and covering graphs of $G$.
6. ±èÁÖ¿µ (È¿¼ºÄ«Å縯´ë)
Á¦ ¸ñ : The pebbling number of some graphs
ÃÊ
·Ï : Chung defined a pebbling move on a graph G to be
the removal of two pebbles
from one vertex and the addition
of
one pebble to an adjacent vertex. The
pebbling number of a
connected graph is the smallest number f(G) such that
any
distribution of f(G) pebbles on G allows one pebble to be
moved to any
specified, but arbitrary vertex. Graham conjectured
that for any connected
graphs G and H,
f ( G product H ) < or = f(G) f(H).
We prove Graham's
conjecture when G and H are fan graphs.
9. ÀÌ»ó±¸(¼º±Õ°ü´ë)
Á¦ ¸ñ : A representation and some properties for k-Fibonacci sequences
ÃÊ ·Ï : The k-Fibonacci sequence, g_{n}^{(k)} is defined as g_{1}^(k) = cdots = g_{k-2}^{k)} = 0, g_{k-1}^(k) = g_{k}^{k)} = 1 and for n > k >=2,
g_{n}^{(k)} = g_{n-1}^(k) + g_{n-2}^{k)} + cdots + g_{n-k}^(k) . In this paper, we give a combinatorial representation of g_{n}^(k) and introduce some properties for k-Fibonacci sequence.
*****************
À̹ø Çмú ¸ðÀÓÀÇ ÃëÁö : Áö³ ÇØ Ã¢¿ø´ë¿¡¼ÀÇ ±¹Á¦ ÇмúȸÀÇ¿Í ³»³âÀÇ Àü»ê¼öÇבּ¸¼¾ÅÍ¿¡¼ÀÇ ±¹Á¦ÇмúȸÀÇ (INTERNATIONAL CONFERENCE on COMBINATORIAL MATRIX THEORY, Jan. 14 - Jan. 17, 2002, POSTECH, Pohang, Korea : °ø½Ä ȨÆäÀÌÁö:
http://math.skku.ac.kr/~sglee/postech/postech.htm) »çÀÌ¿¡ ±¹³»ÀÇ Àü»ê¼öÇÐ, Combinatorics, Graph Theory, Algorithms and Matrix Theory ºÐ¾ßÀÇ ¿¬±¸ ÀηÂÀÌ ¿ÃÇصµ Çѹø ¸¸³ª ¼·ÎÀÇ ÀÇ°ßÀ» ±³È¯ÇÏ´Â ÀÚ¸®¸¦ ¸¶·ÃÇÑ´Ù´Â ÃëÁö·Î À̹ø ¹æÇÐÁß¿¡ ¸ðÀÓÀ» ¸¶·ÃÇß½À´Ï´Ù.
***************
CONFERENCE THEME
Combinatorics, Graph Theory, Algorithms, Combinatorial Matrix Theory and related areas of Computational Mathematics.
OBJECTIVE :
Çѱ¹³»ÀÇ Combinatorics,Graph Theory, Algorithms and Matrix Theory ºÐ¾ßÀÇ °ü½ÉÀ»
Àç°íÇÏ°í, °øµ¿°ü½É»ç¿¡ °üÇÑ Á¤º¸±³È¯ ¹× ¿ìÈ£ÁõÁøÀ» À§ÇÏ¿©, ÃÖ¼Ò 1³â¿¡ ÇѹøÀº ¸¸³²ÀÇ ÀåÀ» ¸¶·ÃÇÑ´Ù´Â ÃëÁö·Î °ü½É ÀÖ´Â ¿¬±¸ÀÚµéÀÇ ¿¬±¸°á°ú ¹× ÁøÇà»çÇ×ÀÇ ¹ßÇ¥, ±³È¯ÇÏ´Â ÀåÀ» ¸¶·ÃÇÏ¿© ´õ¿í ¹ßÀüµÈ ¿¬±¸ ȯ°æÀ» ¸¸µå´Âµ¥ ³ë·ÂÇÑ´Ù.
CONFERENCE
*Chair : °ûÁøÈ£(Æ÷Ç×°ø°ú´ë)
*Organizer : ¼Õ¹«¿µ(â¿ø´ë), ÀÌ»ó±¸(¼º±Õ°ü´ë)
EXCURSION
An excursion to Kyongju is possible. Kyungju
was the capital of Shilla Kingtom (57 BC - 935 AD) and is Korea's tourist
Meca. The cost for the excursion including transportation, entrance fees,
and dinner is about US$50. Nearby
Attractions
ACCOMODATION
Space in a high class hotel has been reserved for participants at a discount
rate. The University Guest
house,Young-Il Dae, and dormitory rooms
of POSTECH are available to participants at much lower rate. You may visit the
web site of the conference for reservation. (Details will be added)
Pohang Culture &Public Information section (+82-562-245-6062, 6616)
City : http://city.pohang.kyongbuk.kr/english/f-introduce.htm
University : http://www.postech.ac.kr/e/
Housing : http://www.postech.ac.kr/e/guide_page/housing_related_services.html
Local Information for Visitors:
Local Travel:
Province Info http://www.kyongbuktour.or.kr/eng/index.html
City Info. http://city.pohang.kyongbuk.kr/english/f-introduce.htm
More to come ...
International Travel & Visas:
Visitors to Korea from some countries require visas. If you are in doubt, please
contact the Korean Consulate http://www.koreanconsulate.org/eindex.htm
nearest you. .
About Korea:
Please Visit the cite "KOREA".
Next Meeting Announcement:
INTERNATIONAL CONFERENCE
on
COMBINATORIAL MATRIX THEORY
Jan. 14 - Jan. 17, 2002
Next CONFERENCE's Official WEB PAGE
The web site of the conference contains up-to-date information including electronic forms for submission of individual presentations.
http://matrix.skku.ac.kr/sglee/postech/postech.htm
È«º¸ ´ë»ó : ´ëÇѼöÇÐȸ¿¡ °ü·Ã ¿¬±¸ÀηÂÀ¸·Î °ø½ÄÀûÀ¸·Î µî·ÏµÈ ¾Æ·¡ ºÐµé (ȸ¿ø¸íºÎ¿¡¼ Combinatorics, Graph Theory, Algorithms, Matrix Theory ¿Í °ü·ÃµÈ ȸ¿ø ¸í´ÜÀ» °Ë»öÇÏ¿© ÀÌ-¸ÞÀÏ·Î ¾Æ·¡ºÐ¿¡°Ô ÃÊ´ëÀåÀ» º¸³Â½À´Ï´Ù. )
ÀÌ ¸§ ¼Ò¼Ó ´ÜÀ§±â°ü
°í±âÇü Çѱ¹°úÇбâ¼ú¿ø ¼öÇÐÀü°ø
±Ý±³Àº Áß¾Ó´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇÐÅë°èÇкÎ
±è¸í±Ç ¼¹®¿©ÀÚ°íµîÇб³
±èº´ÈÖ ÇѾç´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇаú
±è»ó¹è Çѳ²´ëÇб³ ÀÌ°ú´ëÇÐ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
±èÀç°â °æ¼º´ëÇб³ ÀÌ°ú´ëÇÐ ¼ö¸®°úÇкΠ¼öÇÐÀü°ø
±èÁÖ¿µ ´ë±¸È¿¼º°¡Å縯´ëÇб³ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
±èÁÖÇÊ Çѳ²´ëÇб³ ÀÌ°ú´ëÇÐ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
±èâÇÑ ¼¼¸í´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ÄÄÇ»Åͼö¸®Á¤º¸Çаú
±è ö ±¤¿î´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇаú
±èö¼ö Á¦ÁÖ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ Àü»êÅë°èÇаú
±èű٠½Ã½ºÅÛ°øÇבּ¸¼Ò
±èÇÏÁø ¾ÆÁÖ´ëÇб³ Á¤º¸Åë½Å´ëÇÐ Á¤º¸¹×ÄÄÇ»ÅÍ°øÇкÎ
±èÇѵΠÀÎÁ¦´ëÇб³ ÄÄÇ»ÅÍÀÀ¿ë°úÇкΠÀü»ê¼öÇÐÀü°ø
±èÇâ¼÷ ÀÎÁ¦´ëÇб³ ÄÄÇ»ÅÍÀÀ¿ë°úÇкΠÀü»ê¼öÇÐÀü°ø
±èÇý¶õ ÆòÃÌ°íµîÇб³
³ë°æÇÏ ¼¿ï´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼ö¸®°úÇкÎ
¶ó´ö¼ö À²°î±³¿ø¿ø¿¬¼ö¿ø ±³¼öºÎ
¹Î°æÁø ¸íÁö´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú
¹Î°æÈÆ ¸íÁö´ëÇб³ ÀϹݴëÇпø ÄÄÇ»ÅÍ°øÇаú µ¥ÀÌŸº£À̽º ¿¬±¸½Ç
¹ÎÁø½Ä ¼ö°îÁßÇб³
¹Ú °æ ºÎ»ê³²ÀÏ°íµîÇб³
¹ÚÀ±¹ü ¼¿ø´ëÇб³ »ç¹ü´ëÇÐ ¼öÇб³À°°ú
¹ÚÁøÈ« ¼±¹®´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
¹ÚÂù±Ù Çѱ¹Çؾç´ëÇб³ °ø°ú´ëÇÐ ÀÀ¿ë¼öÇаú
¹ÚÇʼº ¼ö¿ø´ëÇб³ ÀüÀÚ°è»êÇаú
¼°ü¼® ÀüÁÖ±³À°´ëÇб³ ¼öÇб³À°°ú
¼±¤¼® ¼³²´ëÇб³ ÄÄÇ»ÅÍÀÀ¿ë¼öÇаú
½Åȫö Áß¾Ó´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇÐÅë°èÇкÎ
¾ç¼ºÈ£ Á¦ÁÖ´ëÇб³ »ç¹ü´ëÇÐ ¼öÇб³À°°ú
¿À¼¼¿µ Ãæ³²´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇаú
¿À¿¬Àå ¼ö¿ø´ëÇб³ ÀÌ°ø´ëÇÐ ÀÚ¿¬°úÇкΠ¼öÇаú
À¯½Âö Àç´É´ëÇÐ ±³¾ç°ú
À±Á¤ÇÑ ¼¿ï´ëÇб³ ´ë¿ªÇؼ®Çבּ¸¼¾ÅÍ
À±ÅÂ¿î °è¸í¹®È´ëÇÐ Àü»êÁ¤º¸°ú
Àº±¤½Ä ÃæºÏ´ëÇб³ »ç¹ü´ëÇÐ ¼öÇб³À°°ú
ÀÌ°æÇö ºÎ°æ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ÀüÀÚÄÄÇ»ÅÍÁ¤º¸Åë½Å°øÇкÎ
ÀÌ»ó¿í ¼ö¿ø´ëÇб³ ÀÌ°ø´ëÇÐ ÀÚ¿¬°úÇкΠ¼öÇаú
ÀÌ¿µÃµ È£³²´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
ÀÌ¿µÈ¯ ´ëÀü´ëÇб³ ÀÌ°ú´ëÇÐ ±âÃÊ°úÇкΠ¼öÇÐÀü°ø
ÀÌÁ¤¸² Æ÷Ç×°ø°ú´ëÇб³ ¼öÇаú
ÀÌÁ¤ÀÚ ¿¬¼¼´ëÇб³ ¹®¸®´ëÇÐ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
ÀÌÁ¾¼± µ¿±¹´ëÇб³ Àü»ê¿ø
Àü¼ºÂù Çѱ¹Ç¥ÁØ°úÇבּ¸¿ø ÃÊÀüµµ ±×·ì
Á¤ÁÖÈñ °æºÏ´ëÇб³ »ç¹ü´ëÇÐ ¼öÇб³À°°ú
Á¤Ä¡ºÀ ¼øõÇâ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇаú
Á¤ÇüÂù Çѱ¹±â¼ú±³À°´ëÇб³ ±³¾çÇкÎ
Á¶¼ºÁø ºÎ°æ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼ö¸®°úÇкÎ
ÃÖ¼º¿ì 66123 Saarbruecken, Germany
Çѱ¤Èñ È£¿ø´ëÇб³ ÄÄÇ»ÅÍÇкΠÀüÀÚ°è»êÇаú
È«¹üÀÏ °æÈñ´ëÇб³ ÀüÀÚÁ¤º¸ÇкΠ¼öÇй×ÀÀ¿ë¼öÇÐÀü°ø
°è½ÂÇõ ¼¿ï´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼ö¸®°úÇкÎ
°í¿µ¹Ì ¼ö¿ø´ëÇб³ ÀÌ°ø´ëÇÐ ÀÚ¿¬°úÇкΠ¼öÇаú
°ûÁøÈ£ Æ÷Ç×°ø°ú´ëÇб³ ¼öÇаú
±è´ë»ê ¼°´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú
±è¿µÈñ ÃæºÏ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇаú
±èÁ¤¿í Àü³²´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇÐÅë°èÇкΠ¼öÇÐÀü°ø
±èâ¹ü ±¹¹Î´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ±âÃÊ°úÇкΠ¼öÇÐÀü°ø
±èÇý°æ ´ë±¸È¿¼º°¡Å縯´ëÇб³ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
µµ¼®¼ö ÀÎÁ¦´ëÇб³ ÄÄÇ»ÅÍÀÀ¿ë°úÇкΠÀü»ê¼öÇÐÀü°ø
¸¶Àμ÷ ÀüºÏ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇÐÅë°èÁ¤º¸°úÇкÎ
¹Î°ÁÖ Ãæ³²´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇаú
¹Î°æÈÆ ¸íÁö´ëÇб³ ÀϹݴëÇпø ÄÄÇ»ÅÍ°øÇаú µ¥ÀÌŸº£À̽º ¿¬±¸½Ç
¹Ú±â¾ç ¼¿ø´ëÇб³ »ç¹ü´ëÇÐ ¼öÇб³À°°ú
¹Ú»ó±Ô ÀÎÇÏ´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇÐÅë°èÇкΠ¼öÇÐÀü°ø
¹Ú¼¼¿ø ¼³²´ëÇб³ ÄÄÇ»ÅÍÀÀ¿ë¼öÇаú
¹Ú½Â°æ ¿¬¼¼´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú
¹é ¶õ È£³²´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
¹é½ÂÀÏ °¡Å縯´ëÇб³ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
¼Û¼®ÁØ Á¦ÁÖ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ Á¤º¸¼öÇаú
½Å±â¿µ ´ëÀü´ëÇб³ ÀÌ°ú´ëÇÐ ±âÃÊ°úÇкΠ¼öÇÐÀü°ø
½Å¼±Á¤ °æºÏ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇаú
½ÅÇ×±Õ ¼¿ï±³À°´ëÇб³ ¼öÇб³À°°ú
¾çÈñ±â ¸íÁö´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú
¿Õ¹®¿Á ÇѾç´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú
À¯Á¾±¤ ÃÊ´ç´ëÇб³ ±³¾ç°ú
À̱¤¿¬ ÇѼ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇаú
À̱¤¿µ ¾ÆÁÖ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
À̱ԺÀ ¹èÀç´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ÀÚ¿¬°úÇкΠÀü»êÁ¤º¸¼öÇÐÀü°ø
À̵¿¼ö Ãæ³²´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇаú
ÀÌ»ó±¸ ¼º±Õ°ü´ëÇб³ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
ÀÌ»ó¿í ¼ö¿ø´ëÇб³ ÀÌ°ø´ëÇÐ ÀÚ¿¬°úÇкΠ¼öÇаú
À̼®¿ë Áß¾Ó´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇÐÅë°èÇкÎ
ÀÌÇåÀç ¼º±Õ°ü´ëÇб³ ÀÚ¿¬°úÇкΠ¼öÇÐÀü°ø
ÀÌÈ«Àç ÀüºÏ´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇÐÅë°èÁ¤º¸°úÇкÎ
Á¤¼¼¿µ Ãæ³²´ëÇб³ ÀÚ¿¬°úÇдëÇÐ ¼öÇаú
Á¤ÇüÂù Çѱ¹±â¼ú±³À°´ëÇб³ ±³¾çÇкÎ
Á¶Á¤±¸ ¼øõ´ëÇб³ »ç¹ü´ëÇÐ ¼öÇб³À°°ú
Á¶ÇÑÇõ ¼¿ï´ëÇб³ »ç¹ü´ëÇÐ ¼öÇб³À°°ú
õ±â»ó ´ëÁø´ëÇб³ ÀÌ°ø´ëÇÐ ¼öÇаú
Ç¥¼º¼ö Æ÷Ç×°ø°ú´ëÇÐ
ÇϱæÂù Çѱ¹ÀüÀÚÅë½Å¿¬±¸¿ø
Çϴ뿬 ¿ï»ê°úÇдëÇÐ ÄÄÇ»ÅÍ°øÇкÎ
ÇÑÁØö °í½Å´ëÇб³ ÀÚ¿¬°úÇкΠÀü»ê¼öÇаú
Ȳ±Ý¼÷ ºÎ»ê¿Ü±¹¾î´ëÇб³ ÀÌ°ø´ëÇÐ ¼öÇаú
Ȳ¼®±Ù °æºÏ´ëÇб³ »ç¹ü´ëÇÐ ¼öÇб³À°°ú
È«½ÂÇ¥: Æ÷Ç×°ø°ú´ëÇб³
ÀÌÀç¿î: ¿µ³²´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú(julee@yu.ac.kr)
±èÁøȯ: ¿µ³²´ëÇб³ »ç¹ü´ëÇÐ ¼öÇаú(kimjh@ynucc.yeungnam.ac.kr)
¹Ú¿µ±Ô: ¿µ³²´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú(ykpark@ynucc.yeungnam.ac.kr)
±è°ü¼ö: ¿µ³²´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú(julee@gskim@ynucc.yeungnam.ac.kr)
±èÁ¾¿í: ¿µ³²´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú
½Å¿µÈñ: ¿µ³²´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú(jina_2@hanmail.net)
±è¸í¿Á: ¿µ³²´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú ( 88mokim@hanmail.net)
ÀÓ´ë±Ù: °è¸í´ëÇб³ ¼öÇаú( limd@kmucc.keimyung.ac.kr)
±èµ¿ÁÖ: °è¸í´ëÇб³ ¼öÇаú
±è»ó¹ü: ¸¶»êÁ¦ÀÏ¿©°í(ksbum@yahoo.co.kr)
¼Ò¼øÅÂ: ¸íÁö´ëÇб³
(¾Æ·¡´Â ´ëÇѼöÇÐȸ ÁÖ¼Ò·Ï¿¡ updated µÇ¾î ÀÖÁö ¾Ê¾Æ¼ ¸ÞÀϸµ ¸®½ºÆ®¿¡ Ãß°¡ÇÒ ºÐ)
±èµ¿¼ö: Çѱ¹°úÇбâ¼ú´ëÇÐ
¼Û¼º¿: Æ÷Ç×°ø°ú´ëÇб³
³ëÀ¯¹Ì: Æ÷Ç×°ø°ú´ëÇб³
È«½ÂÇ¥: Æ÷Ç×°ø°ú´ëÇб³
ÀÌâ¿ì: ¼¿ï½Ã¸³´ë
¼ÛÁØÈ£: ¼¿ï½Ã¸³´ë
ÀÌÁØ¿±: ÀÌÈ¿©´ë
Çϼº³²:°æÈñ´ë
Á¶Á¤Èñ: °í·Á´ë
±èâÇÑ: ¼¼¸í´ë
ÀÌÁØ¿: °¿ø´ë
À̽Âö: ¿¬¼¼´ë
ÃÖ¼³Èñ: ÀüÁÖ´ë
À̱ԺÀ: ¹èÀç´ë
À̹μ·: ´Ü±¹´ë
±èÁ¤Áø: ¸íÁö´ë
³²À±¼ø: »ï¼º°íµî¿¬±¸¼Ò
±èÁø¼ö: ¼º±Õ°ü´ë
¼³Çѱ¹: ¼º±Õ°ü´ë
ÀÌÀ¯È£: ¼º±Õ°ü´ë
¾çÁ¤¸ð: ¼º±Õ°ü´ë-Æ÷Ç×°ø´ë
±è¸í¾Ö: ¼º±Õ°ü´ë
±èÀºÅÂ: ¼º±Õ°ü´ë
Á¤°æÈÆ: ¼º±Õ°ü´ë
¹Ú½Â°æ: ¿¬¼¼´ë
±èÁ¤Áø: ¸íÁö´ë
Ç¥¼º¼ö: Æ÷Ç×°ø´ë
±è¿µ¿í: °í·Á´ë
À±¿µÁø: ±º»ê´ë
À̽·¡: ¼º±Õ°ü´ë ±â°è°øÇкÎ
¹é ¶õ: È£³²´ë
±è°ÇÈ£: ¾È»ê°ø°ú´ëÇÐ °ø¾÷°æ¿µ°ú
³ë¼±¼÷: ÀÌÈ¿©´ë
ÇÑ»ó±Ù: Çѱ¹°úÇбâ¼ú¿ø
Á¤ÇüÂù: Çѱ¹±â¼ú±³À°´ëÇÐ
±è´ë°æ: ÇѾç´ëÇб³ ÀÌ°ú´ëÇÐ ¼öÇаú
================================================
À̹ø ¸ðÀÓ¿¡ Âü¼® È®ÀÎ ÇØÁֽŠºÐ :
Ȳ¼®±Ù(°æºÏ´ë), Ȳ±Ý¼÷(ºÎ»ê¿Ü´ë), ¾ç¼ºÈ£(Á¦ÁÖ´ë), À̱ԺÀ(¹èÀç´ë ) ,ÇÏ ±æÂù(ETRI ), , °ûÁøÈ£*(Æ÷Ç×°ø´ë), ÀÌÀç¿î(¿µ³²´ë), ¹ÚÁøÈ«*(¼±¹®´ë), Á¶ÇÑÇõ(¼¿ï´ë), ±è¼·É(°æÈñ´ë)*, ¹æ¼¼Á¤*(Æ÷Ç×°ø´ë), ÀÌ»ó¿í*, °í¿µ¹Ì(¼ö¿ø´ë), ÀÌâ¿ì(¼¿ï½Ã¸³´ë), ¼ÛÁØÈ£(¼¿ï½Ã¸³´ë), ¼Û¼º¿*(Æ÷Ç×°ø´ë), Kyoungah See, ¼Û¼®ÁØ(Á¦ÁÖ´ë), ¼Õ¹«¿µ(â¿ø´ë), Á¶¼ºÁø(ºÎ°æ´ë)*, ±èÇѵÎ(ÀÎÁ¦´ë), ÃÖÀº¼÷(ºÎ°æ´ë), ±èÁøȯ(¿µ³²´ë), ±èÁÖ¿µ(´ëÈ¿Ä«´ë), ¹é¿µ±æ(ºÎ°æ´ë), ±è°ü¼ö(¿µ³²´ë), ÀÌ»ó±¸(¼º±Õ°ü´ë), õ±â»ó(´ëÁø´ë), ³ëÀ¯¹Ì(Æ÷Ç×°ø´ë), ¾çÁ¤¸ð(¼º±Õ°ü´ë-Æ÷Ç×°ø´ë), ¿Ü¿¡ Àü±¹¿¡¼ ¾à10ºÐ ³»¿Ü°¡ Ãß°¡·Î Âü¼®À» ÇÏ½Ç ¿¹Á¤À̶ø´Ï´Ù.
*************************************************************
°¨»çÇÕ´Ï´Ù. ¿©·¯ ¼±»ý´ÔÀÇ ÇùÁ¶·Î ¿ì¼± ÀÏÁ¤ÀÌ ÀâÇû´ä´Ï´Ù. µî·Ïºñ´Â ¾øÀ¸¸ç ¼÷½ÄÀº Á¦°øµÇ°í, ¹ÌÆà ÈÄ¿¡ ÇÁ·Î½ÃµùÀ» º¸³»µå¸°´ä´Ï´Ù. °¿¬ÀÌ È®Á¤µÇ½Å ºÐ°ú Âü¼® È®ÀÎÀ» ÇØÁֽŠ¸ðµç ºÐ¿¡°Ô 2¿ù 12ÀÏ°æ ÃÊûÀåÀ» º¸³»µå¸®°Ú½À´Ï´Ù. ÃÊûÀåÀ» ¿ìÆíÀ¸·Î ¹Þ°íÀÚÇϽô ºÐÀº ¿¬¶ôÁÖ½Ã¸é º°µµ·Î º¸³»µå¸®°Ú½À´Ï´Ù.
*************************************************************
PS : ¹ßÇ¥ÀÚ¿ë NOTICE :
±×°£ ÃÊ·Ï °ú ¿ø°í¸¦ º¸³» ÁֽŠ¿©·¯ ¼±»ý´ÔºÐ²² °¨»çµå¸®¸ç ³í¹® ¹ßÇ¥¸¦ ÇϽô ºÐÀº 2¿ù 20ÀÏ ±îÁö ¶Ç´Â ¹ßÇ¥ ´çÀÏ¿¡ ¿ø°í ÆÄÀÏÀ» ÀüÇØÁֽøé 21ÀϱîÁö Á¶Á÷À§¿øȸ¿¡¼ ÃëÇÕÇÏ¿© Àü»ê¼öÇבּ¸¼¾ÅÍÀÇ ³ëÀ¯¹Ì¹Ú»ç´ÔÀÌ ÇÁ·Î½ÃµùÀ» ¸¸µå´Âµ¥ ¼ö°íÇØÁֽðڽÀ´Ï´Ù. ÇÁ·Î½ÃµùÀº ¿Ï¼ºµÇ´Â ´ë·Î Âü¼®ÀÚ ¸ðµÎ¿¡°Ô º¸³»µå¸®µµ·Ï ÇÏ°Ú½À´Ï´Ù.
(¹ßÇ¥ÀÚ ¿©·¯ºÐÀº ÇÁ·Î½Ãµù¿ë ¿ø°í Àü¹®Àº Tex ¶Ç´Â HWP ÆÄÀÏ·Î ¾ç½Ä¿¡ ±¸¾Ö ¾øÀÌ ¹ßÇ¥ ´çÀϱîÁö¸¸ ÁÖ½Ã¸é µÈ´ä´Ï´Ù. ÀÌ¹Ì º¸³» ÁֽŠºÐ¿¡°Ô´Â ¹Ì¸® °¨»çµå¸³´Ï´Ù.) Last updated by Feb. 16.